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eLife Assessment
This important study represents a data processing pipeline to discover causal interactions from 
time-lapse imaging data and convincingly illustrates it on a challenging application for the analysis 
of tumor-on-chip ecosystem data. The authors describe the raw data they used (imaging data), go 
through a step-by-step description of how to extract the features they are interested in from the raw 
data, and how to perform the causal discovery process. This article tackles the problem of learning 
causal interactions from temporal data, which is applicable to many biological applications.

Abstract Live-cell microscopy routinely provides massive amounts of time-lapse images of 
complex cellular systems under various physiological or therapeutic conditions. However, this 
wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalX-
tract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from 
morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract method-
ology combines network-based and information-based frameworks, which is shown to discover 
causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase 
the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under 
therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly 
inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also 
multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique compu-
tational tool to interpret live-cell imaging data for a range of fundamental and translational research 
applications.

Introduction
Live-cell imaging microscopy commonly produces extensive amounts of time-lapse images of cellular 
systems, which can be segmented to extract morphodynamic features and interactions of individual 
cells under increasingly complex and physiologically relevant conditions. However, this wealth of infor-
mation remains largely underexploited due to a lack of methods and tools able to discover causal 
effects from spatio-temporal correlations under well-controlled experimental conditions.

CausalXtract addresses this need by integrating an advanced live-cell image feature extraction 
tool with a reliable and scalable causal discovery method (Figures 1 and 2) in order to learn temporal 
causal networks from live-cell time-lapse imaging data (Figure 3).
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Figure 1. CausalXtract pipeline. (a) Live-cell tumor ecosystem reconstituted ex vivo (Nguyen et al., 2018) using the tumor-on-chip technology 
(‘Materials and methods’). (b) CausalXtract’s live-cell image feature extraction module (CellHunter+). The tracking of cancer and immune cells and 
of their mutual interactions is illustrated in Videos 1–3, in the absence or presence of cell division and apoptosis event. Examples of time series of 
extracted cellular features are shown in Figure 1—figure supplement 1. (c) CausalXtract’s temporal causal discovery module (tMIIC) learns a temporal 
causal network from the features extracted in (b). See ‘Materials and methods’ for CausalXtract’s implementation details and theoretical foundations. A 
step-by-step notebook of CausalXtract pipeline is provided with the source code.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Time series of cellular features extracted from the tumor ecosystems.

https://doi.org/10.7554/eLife.95485


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Simon, Comes, Tocci et al. eLife 2024;13:RP95485. DOI: https://doi.org/10.7554/eLife.95485 � 3 of 16

Figure 2. Relation to Granger–Schreiber temporal causality and tMIIC benchmarking against PC and PCMCI+. (a) The signature of Granger–Schreiber 
temporal causality is a vanishing Transfer Entropy, that is,‍TY→X = I(Xt; Yt′<t |Xt′<t) = 0‍ (‘Materials and methods’). In the time-unfolded causal network 
framework, it implies (i) the absence of (dashed) edge between ‍Xt‍ and any ‍Yt′‍, with ‍t′ < t‍, and (ii) if ‍Xt‍ is adjacent to ‍Yt‍, the presence of temporal 
(2-variable+time) v-structures, ‍Yt′ → Yt ← Xt‍, for all ‍Yt′‍ adjacent to ‍Yt‍, with ‍t′ < t‍ (‘Materials and methods’, Theorem 1). (b) By contrast, the presence 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.95485
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Results
CausalXtract’s feature extraction and causal discovery modules
CausalXtract’s live-cell image feature extraction module (CellHunter+) (Figure 1b) is based on Cell-
Hunter software (Nguyen et al., 2018) and consists of three steps: detection, tracking, and feature 
extraction of live cells within time-lapse video images. First, automatic localization/segmentation of 
cells (e.g., tumor and immune cells) is performed with the Circular Hough Transform (CHT) algorithm 
(Davies, 2004) to estimate the cell centers and radii. Second, cell trajectories along the frames are 
constructed by linking the positions detected at the previous time step through Munkres’ algorithm 
for optimal sub-pattern assignment problems (OAPs) (Munkres, 1957). Finally, relevant descriptors 
related to the shape, motility, and state of the cells, as well as cell–cell interactions, are quantified from 
each cell trajectory (‘Materials and methods’).

CausalXtract’s temporal causal discovery module (tMIIC) (Figure 1c) is adapted from the causal 
discovery method (MIIC) (Verny et  al., 2017; Cabeli et  al., 2020; Cabeli and Li, 2021; Ribeiro-
Dantas et al., 2024), which learns contemporaneous causal networks (i.e., when temporal information 
is not available) for a broad range of biological or biomedical data, from single-cell transcriptomic and 
genomic alteration data (Verny et al., 2017; Desterke et al., 2020) to medical records of patients 
(Cabeli et al., 2020; Sella et al., 2022; Ribeiro-Dantas et al., 2024). Live-cell time-lapse imaging data 
contain, however, information about cellular dynamics, which can in principle facilitate the discovery 
of novel cause–effect functional processes based on the assumption that future events cannot cause 
past ones. To this end, CausalXtract’s discovery module, tMIIC, reconstructs time-unfolded causal 
networks, where each variable is represented by several nodes at different relative time points 
(Assaad et al., 2022; Figure 1c). Such a time-unfolded network framework (Entner and Granger, 
2010; Malinsky and Spirtes, 2018; Runge et  al., 2019) is required to account for the temporal 
correlation between successive time steps in time-series data. This graph-based causal framework 
goes beyond the seminal concept of temporal causality originally proposed by Granger, 1969 for 
linear time series without reference to graphical models and later extended to nonlinear dynamics by 
Schreiber, 2000; Barnett et al., 2009. In particular, Granger–Schreiber causality is in fact too restric-
tive and may overlook actual causal effects that can be uncovered by graph-based causal discovery 
methods (Figure  2a and b; ‘Materials and methods’, Theorem 1). In addition, Granger–Schreiber 
causality has long been known to infer spurious causal associations based on time delays by excluding 
the presence of latent common causes a priori (Assaad et al., 2022). tMIIC circumvents these limita-
tions by combining graph-based and information-based approaches (‘Materials and methods’), while 
including contemporary and time-delayed effects of unobserved latent variables that are ubiquitous 
in cell biology data (e.g., the latent effects of cell cycle phases on cellular features and responses).

We benchmarked tMIIC on synthetic datasets resembling the real-world data of interest analyzed in 
this study (i.e., number of time steps, network size, and degree distribution) and found that it matches 
or outperforms state-of-the-art methods, PC and PCMCI+ (Runge, 2020), while running order of 
magnitudes faster on datasets of biologically relevant size including tens to hundreds of thousands 

of a temporal (2-variable+time) v-structure, ‍Yt′ → Yt ← Xt‍ does not imply a vanishing Transfer Entropy as long as there remains an edge between 
any ‍Yt′′<t‍ and ‍Xt‍. It implies that Granger–Schreiber temporal causality is in fact too restrictive and may overlook actual causal effects, which can be 
uncovered by graph-based causal discovery methods. Hence, tMIIC’s time-unfolded network framework, combining graph-based and information-
based approaches, sheds light on the common foundations of the seemingly unrelated graph-based causality and Granger–Schreiber temporal 
causality, while clarifying their actual differences and limitations. (c) Benchmarking of tMIIC on synthetic time-series datasets generated from 15-node 
causal networks based on linear combinations of contributions, Appendix 1 and Figure 2—figure supplements 1–3. (d) Benchmarking with more 
complex 15-node time-series datasets based on nonlinear combinations of contributions, Appendix 2 and Figure 2—figure supplement 4. Running 
times and scores (Precision, Recall, Fscore) are averaged over 10 datasets and compared to PC and PCMCI+ methods using different kernels (GPDC, 
KNN, ParCorr).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Benchmark assessment of CausalXtract’s causal discovery module (tMIIC) using generated time-series datasets.

Figure supplement 2. CausalXtract insensitivity to an overestimated maximum lag τ.

Figure supplement 3. CausalXtract sensitivity to non-stationary variables.

Figure supplement 4. Benchmark assessment of CausalXtract’s causal discovery module (tMIIC) using more complex time-series datasets.

Figure 2 continued

https://doi.org/10.7554/eLife.95485
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Figure 3. Application of CausalXtract to time-lapse images of tumor ecosystems reconstituted ex vivo. (a) Summary causal network inferred by 
CausalXtract. The underlying time-unfolded causal network is shown in Figure 3—figure supplement 1. Red (resp. blue) edges correspond to positive 
(resp. negative) associations. Bidirected dashed edges represent the effect of unobserved (latent) common causes. Annotations on edges correspond to 
time delays in time steps (1 ts = 2 min). The inferred network is largely robust to variations in sampling rate (‍δτ ‍) and maximum lag (‍τ ‍), Figure 3—figure 
supplement 2. Here, ‍δτ = 7‍ ts and ‍τ = 84‍ ts are chosen automatically by CausalXtract. (b) The CAF presence subnetwork highlighting the direct causal 
effects of CAFs on cancer cells. In particular, CausalXtract uncovers that CAFs directly inhibit cancer cell apoptosis independently from treatment, which 
has not been reported so far. (c) The treatment subnetwork highlighting the direct causal effects of treatment on cancer cells. In particular, CausalXtract 
uncovers that treatment increases cancer cell perimeter, which has not been reported either. (d) The eccentricity-area subnetwork highlighting multiple 
direct and possibly antagonistic time-lagged effects, notably, between cell division and eccentricity and between cell apoptosis and area, as discussed 
in the main text.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.95485
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time steps (Figure 2c and d and Figure 2—figure supplement 3; Figure 2—figure supplement 2; 
Figure 2—figure supplement 1; Figure 2—figure supplements 4).

Application to tumor-on-chip cellular ecosystems
We showcase CausalXtract with the analysis of time-lapse images of a tumor ecosystem reconstituted 
ex vivo using the tumor-on-chip technology (Figure 1a). These live-cell time-lapse images come from 
a proof-of-concept study (Nguyen et al., 2018), which demonstrated the effects of an anticancer 
drug (the monoclonal antibodies trastuzumab, brand name Herceptin, used to treat HER2+ breast 
cancers) on a reconstituted tumor microenvironment, including cancer cells, immune cells, cancer-
associated fibroblasts (CAFs), and endothelial cells (‘Materials and methods’). However, a comprehen-
sive extraction and analysis of cellular morphodynamic features and interactions remained unexplored.

To this end, cellular features such as cell geometry, velocity, division, apoptosis, cell–cell transient 
interactions, and persistent contacts were first extracted from the raw images using CausalXtract’s 
feature extraction module (Figure 1b, Figure 1—figure supplement 1).

Then, summary causal network (Figure 3a) and the corresponding time-unfolded causal network 
(Figure 3—figure supplement 1) were reconstructed between extracted cellular features, cell–cell 
interactions, and therapeutic conditions using CausalXtract’s temporal causal discovery module 
(Figure 1c).

CausalXtract inferred network (Figure 3a) uncovers novel biologically relevant findings, in addi-
tion to confirming known results from earlier studies. In particular, CausalXtract discovers that CAFs 
directly inhibit cancer cell apoptosis, independently from anticancer treatment (Figure  3b), while 
earlier studies reported that CAFs merely reduced the effect of treatment (Nguyen et al., 2018). 
CausalXtract also discovers that treatment increases cancer cell perimeter (Figure 3c), which has not 
been reported so far either. In addition, CausalXtract confirms known results from earlier studies. In 
particular, it recovers that treatment increases cancer cell apoptosis and the number of cancer-immune 
interactions, as well as decreases the division rate of cancer cells (Figure 3c). Likewise, CausalXtract 
recovers that CAFs stimulate cancer cell migration and increase their area (Figure 3b).

Interestingly, CausalXtract identifies also multiple and possibly antagonistic effects with different 
time delays. For instance, CausalXtract recovers several antagonistic relations between morphody-

namic features such as cell division and eccentricity 

Figure supplement 1. Time-unfolded causal network inferred by CausalXtract.

Figure supplement 2. Robustness of CausalXtract’s temporal causal networks to variations in sampling rate.

Figure 3 continued

Video 1. Example of tracking of cancer and immune 
cells and of their mutual interactions in the absence of 
cell division and apoptosis event.

https://elifesciences.org/articles/95485/figures#video1

Video 2. Example of tracking of cancer and immune 
cells and of their mutual interactions in the presence of 
a cell division event.

https://elifesciences.org/articles/95485/figures#video2

https://doi.org/10.7554/eLife.95485
https://elifesciences.org/articles/95485/figures#video1
https://elifesciences.org/articles/95485/figures#video2
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or cell apoptosis and area (Figure  3d). Indeed, 
the late phases of cell division are associated to 
a marked increase in eccentricity (red edge) but 
preceded by a net decrease in eccentricity, 2–3 
hr before cytokinesis (blue edges), once the deci-
sion to divide has been made (i.e., the probable 
latent cause) and the cell is actually duplicating 
its biological materials (prophase) (Figure  3d). 
Likewise, the area change upon apoptosis is 
predicted to first decrease soon after apoptosis 
(blue edge) before eventually increasing upon 
cell lysis (red edge) (Figure 3d). These results are 
robust to variations in sampling rate (Figure 3—
figure supplement 2).

Discussion
All in all, CausalXtract is a flexible pipeline 
that uncovers novel and possibly time-lagged 
causal relations between cellular features under 
controlled conditions (e.g., drug). CausalXtract 
uniquely combines live-cell feature extraction 
with information theory and causal discovery 

approaches. It consists of two independent computational modules, conceived to warrant interop-
erability with alternative live-cell segmentation and tracking methods or alternative temporal causal 
discovery methods.

CausalXtract opens up new avenues to analyze live-cell imaging data for a range of fundamental 
and translational research applications, such as the use of tumor-on-chips to screen immunotherapy 
responses on patient-derived tumor samples. With the advent of virtually unlimited live-cell image 
data, flexible hypothesis-free interpretation methods are much needed (Driscoll and Zaritsky, 2021), 
and we believe that CausalXtract can bring unique insights based on causal discovery to interpret such 
information-rich live-cell imaging data.

Materials and methods
Tumor-on-chip preparation and live-cell microscopy
The videos analyzed in the present study refer to biological experiments emulating a 3D breast tumor 
ecosystem (Nguyen et al., 2018). All tumor-on-chip experiments have a central endothelium compart-
ment containing endothelial cells (primary human umbilical vein endothelial cells [HUVECs]) and two 
lateral chambers filled with biomimetic hydrogel (collagen type I at 2.3 mg/mL) seeded with cancer 
cells (HER2+ breast cancer BT474 cell line) and immune cells (peripheral blood mononuclear cells 
[PBMCs]) from healthy donors (Figure 1a). Four experimental conditions were considered depending 
on the presence or absence of breast CAFs (CAF cell line Hs578T) and drug treatment (trastuzumab, 
Herceptin). The immortalized human BT474 and Hs578T cell lines were purchased from ATCC (#HTB-
20, #HTB-126) and authenticated by SRT profiling (GenePrint 10 system, Promega, #B9510). The 
human primary HUVEC lines were purchased from Lonza (#C2517A). PBMCs were routinely isolated 
from the fresh blood of healthy donors by density gradient centrifugation. All cells were periodi-
cally tested to exclude mycoplasma contamination using a qPCR-based method (VenorGem Classic, 
BioValley, #11-1250). Videos were acquired using inverted motorized Leica microscopes with a frame 
rate of 2 min for up to 48 hr (1440 frames). Figure 1b shows a crop frame with cancer cells, PBMCs, 
and CAFs. Each video was cropped into multiple small 300 × 300 pixel videos (referred to as crops 
in the following), each of which represented a field of view at subsequent time frames containing a 
‘main’ cancer cell (MCC) initially placed at the center of the image, some PBMC immune cells, other 
cancer cells, and possibly CAFs within the surrounding of the MCC depending on the experimental 

Video 3. Example of tracking of cancer and immune 
cells and of their mutual interactions in the presence of 
a cell apoptosis event.

https://elifesciences.org/articles/95485/figures#video3

https://doi.org/10.7554/eLife.95485
https://elifesciences.org/articles/95485/figures#video3


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Simon, Comes, Tocci et al. eLife 2024;13:RP95485. DOI: https://doi.org/10.7554/eLife.95485 � 8 of 16

conditions. Thirty-six video crops of up to 1440 frames were analyzed (46,935 frames in total) corre-
sponding to nine video crops per experimental conditions.

CausalXtract’s live-cell image feature extraction module
The live-cell image feature extraction module (CellHunter+) (Figure 1b) extends the CellHunter soft-
ware (Nguyen et al., 2018) and consists of three steps: detection, tracking, and feature extraction 
of live cells within time-lapse video images. First, cell detection is based on the segmentation of 
circular-shaped objects using CHT (Davies, 2004) with radii set around the theoretical radii of the 
two cell populations (‍rim = 4‍ px for immune cells and ‍rca = 14‍ px for MCCs with a pixel resolution 

‍1 px = 0.645µm‍; Nguyen et al., 2018). Then, cell tracking is performed by linking cells detected at 
the ‍ith‍ frame to cells located at the ‍(i + 1)th

‍ frame within a maximum distance from the detected cell 
candidate. While the motions of both MCCs and immune cells resemble random walks with time-
varying drift and volatility, these two cell types exhibit different motility characteristics (Nguyen et al., 
2018). Hence, different maximum distances are considered for the two cell populations: it was set to 
40 px for MCCs and to 20 px for immune cells. For each cell population, an OAP using the Munkres 
algorithm Munkres, 1957 is solved: the globally best possible pairing among located objects is based 
on an assignment cost equal to the inverse of the distance between pairs of cell candidates at the 
‍ith‍ and ‍(i + 1)th

‍ frames. Cell appearing/disappearing and cell overlaps due to projection errors of the 
3D scene in the 2D domain are also handled. Finally, cellular morphodynamic features and cell–cell 
interaction features are extracted at successive positions along each trajectory. For each MCC, 15 
descriptors were extracted (Figure 1—figure supplement 1) and classified into four main categories: 
cell shape, motility, state, and interaction descriptors.

Shape descriptors
The active contour algorithm implemented in MATLAB (Chan and Vese, 2001) was used to segment 
the MCC boundaries on each video crop frame. Taking as input a frame representing the ‍ith‍ snapshot 
of the ‍tth‍ MCC, it returns a binary image, where the MCC is represented by a white region. From the 
binary image, the shape properties of the region occupied by each MCC were extracted using the 
MATLAB regionprops algorithm. The resulting descriptors of the extracted shape are listed below:

•	 Area indicates the number of pixels composing the region. The equivalent diameter of the ‍tth‍ 
MCC in the ‍ith‍ frame is defined as ‍d

t
i =

√
4 · area/π ‍.

•	 Perimeter represents the distance along the MCC boundary.
•	 Circularity is defined as ‍4 · area · π/perimeter2

‍, which is equal to 1 when the region is perfectly 
circular.

•	 Eccentricity denotes the eccentricity of the ellipse with the same second moments as the region. 
The value is equal to 1 when the region is a line and to 0 when the region is a circle.

•	 Instantaneous shape change is defined as ‍|d
t
i − dt

i−1|‍, corresponding to the difference in abso-
lute value of the equivalent diameters between the ‍ith‍ and ‍(i − 1)th

‍ frames of the ‍tth‍ MCC.

Motility descriptors
The positions ‍p

t
i = (xt

i, yt
i)‍ and ‍p

t
i−1‍ of the ‍tth‍ MCC in the ‍ith‍ and ‍(i − 1)th

‍ frames were compared using 
the Euclidean distance ‍d(·)‍ to define the following motility parameters:

•	 Instantaneous cancer velocity (Masuzzo et al., 2016) is defined as ‍d(pt
i, pt

i−1)/∆t‍, where ‍∆t‍ is the 
time interval between two consecutive frames.

•	 Net displacement (Masuzzo et al., 2016) indicates the resultant distance between the initial 
and current positions of the ‍tth‍ MCC, ‍d(pt

1, pt
i)‍.

•	 Directionality (Masuzzo et al., 2016) is defined as the ratio of net displacement, ‍d(pt
1, pt

i)‍, and 

curvilinear distance, 
‍

i∑
k=2

d(pt
k, pt

k−1)
‍
. It measures the persistence of motion and ranges from 0 for 

confined cells to 1 for cells moving perfectly straight in one direction.

State descriptors
They record apoptosis or division events:

https://doi.org/10.7554/eLife.95485
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•	 Apoptosis indicates if the MCC has died during the experiment. It is set to ‘No’ as long as the 
cell has not died and becomes ‘Yes’ for the remaining frames after the cell undergoes apoptosis.

•	 Division indicates if the MCC has divided during the experiment. It is set to ‘No’ as long as the 
cell has not divided and becomes ‘Yes’ for the remaining frames after the cell divides.

Interaction descriptors
Interactions between MCCs and immune cells were defined with respect to two radii around each 
MCC, ‍r1 = rim + rca + 2 = 20‍ px and ‍r2 = 2 × (rim + rca) = 36‍ px (Nguyen et al., 2018). Hence, ‍r1‍ refers 
to MCC and immune cells in actual physical contact, while ‍r2‍ refers to MCC and immune cells in close 
vicinity. Then, for each sample the following interaction features were defined:

•	 Number of cancer-immune interactions (r2) corresponds to the number of immune cells within 
the interaction radius r2 around the MCC on that frame.

•	 Number of cancer-immune interactions (r1) corresponds to the number of immune cells in close 
contact with the MCC on that frame.

•	 Minimal cancer-immune distance (r2) is the minimum distance between the MCC and the 
immune cells within a radius r2.

•	 Mean immune velocity (r2) is the mean instantaneous velocity norm of the immune cells within 
the interaction radius r2 around the MCC.

•	 Mean immune velocity (r1) is the mean instantaneous velocity norm of the immune cells in close 
contact with the MCC.

Overview of causal discovery methods for non-temporal data
Traditional causal discovery methods (Pearl, 2009; Spirtes, 2000) aim to learn causal networks from 
datasets of independent samples by proceeding through successive steps. They first learn structural 
constraints in the form of unconditional or conditional independence between variables and remove 
the corresponding edges from an initial fully connected network. The second step then consists of 
orienting some of the retained edges based on the signature of causality in observational data. This 
corresponds to orienting three-variable ‘v-structure’ motifs as ‍X → Z ← Y ‍ whenever the edge ‍X − Y ‍ 
has been removed without conditioning on the variable ‍Z ‍, which implies that ‍Z ‍ cannot be a cause 
of ‍X ‍ nor ‍Y ‍. This does not guarantee, however, that ‍X ‍ (or ‍Y ‍) is an actual cause of ‍Z ‍, which also 
requires to rule out the possibility that the edge between ‍X ‍ and ‍Z ‍ (or ‍Y ‍ and ‍Z ‍) might originate from 
a latent common cause, ‍L‍, unobserved in the dataset, that is, ‍X ��� L ��� Z ‍. In addition, classical 
causal discovery methods are prone to spurious conditional independences, which lead to many false-
negative edges and limit the accuracy of inferred orientations. The recent causal discovery method 
(MIIC) (Verny et al., 2017; Cabeli et al., 2020; Cabeli and Li, 2021; Ribeiro-Dantas et al., 2024), 
which combines constraint-based and information-based principles, learns more robust causal graph-
ical models by first collecting iteratively significant information contributors before assessing condi-
tional independences (Affeldt and Isambert, 2015; Affeldt et al., 2016). In practice, MIIC’s strategy 
limits spurious conditional independences, which improves its edge sensitivity and orientation reli-
ability compared to traditional constraint-based methods. In addition, MIIC can handle missing data 
(Cabeli et al., 2020) and also heterogeneous multimodal data by analyzing continuous and categor-
ical variables on the same footing based on a mutual information supremum principle for finite dataset 
(Cabeli et  al., 2020; Cabeli and Li, 2021; Ribeiro-Dantas et  al., 2024). Last, MIIC distinguishes 
genuine causal relations from putative and latent causal effects (Ribeiro-Dantas et al., 2024) that are 
ubiquitous in real-world applications.

CausalXtract’s causal discovery module for time-series data (tMIIC)
In order to analyze time-series datasets, CausalXtract’s causal discovery module (tMIIC) aims to learn 
a time-unfolded graph, ‍Gt‍, where each variable is represented by a series of nodes associated with its 
value at different relative time points (Figure 1c). Such a time-unfolded network framework (Entner 
and Granger, 2010; Malinsky and Spirtes, 2018; Runge et al., 2019) is required to account for the 
temporal correlation between successive samples in time-series data. Assuming that the dynamics can 
be considered stationary (see section ‘Benchmarking of CausalXtract’s causal discovery module’), the 
time-unfolded graph, ‍Gt‍, should be translationally invariant over time and can be assigned a periodic 
structure a priori. In addition, ‍Gt‍ can be restricted to a few time steps from the running time, ‍t‍, back 

https://doi.org/10.7554/eLife.95485
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to a maximum time lag, ‍t − τ ‍, since nodes at future time points (‍t′ > t‍) cannot a priori influence the 
observed data at current or previous time points (‍t′ ⩽ t‍) (Figure 1c). The maximum time lag ‍τ ‍ should 
be chosen so as to have little effect on the final graphical model, which can be achieved for instance 
by setting ‍τ ‍ to twice the average relaxation time of the variables of the dataset. In practice, we may 
also limit the number of time points ‍ν‍ in ‍Gt‍ by introducing a time increment ‍δτ ‍ between consecutive 
time points, which leads to ‍ν = τ /δτ ‍ time-lagged layers in ‍Gt‍.

Such a compact periodic graphical representation over a sliding temporal window is learned with 
tMIIC, which extends MIIC causal discovery method to analyze time-series data. First, tMIIC identifies 
all necessary edges involving at least one contemporaneous node at time ‍t‍ (Figure 1c). Once these 
time-lagged and contemporaneous necessary edges have been identified, they are simply duplicated 
at earlier time points to enforce the translational invariance of ‍Gt‍ skeleton. Time-lagged edges are 
then pre-oriented with a first arrowhead pointing toward the future, considering that current time 
points cannot cause earlier events. Then, contemporaneous and time-lagged edges can be further 
oriented using MIIC orientation probability scores applied to ‍Gt‍, which may also uncover a second 
arrowhead (backward in time) for time-lagged edges. This corresponds to time-lagged latent causal 
effects from unobserved common causes (Figure 1c).

Learning such structural models including latent variables from time-series data was first proposed 
for time-lagged effects (Entner and Granger, 2010) and subsequently extended to contempora-
neous effects (Malinsky and Spirtes, 2018) by adapting the constraint-based FCI method allowing for 
latent variables (Spirtes, 2000). While traditional constraint-based methods suffer from poor recall, 
the recent PCMCI (Runge et  al., 2019)/PCMCI+ (Runge, 2020) method improves recall by intro-
ducing ad hoc conditioning rules for autocorrelated time series. By contrast, tMIIC does not require 
any ad hoc conditioning rules as it relies on the same robust information-theoretic strategy as MIIC to 
limit spurious independence and improve edge recall. tMIIC also captures time-lagged and contem-
poraneous effects due to latent variables.

Relation to Granger–Schreiber temporal causality
The concept of temporal causality was originally formulated by Granger, 1969 without reference 
to any graphical model by comparing linear autoregression with or without past values of possible 
causal variables. This was later extended to nonlinear relations by Schreiber, 2000; Barnett et al., 
2009 using the notion of Transfer Entropy, ‍TX→Y ‍, which can be expressed in terms of multivariate 
conditional information:

	﻿‍ TX→Y = I(Yt; Xt′<t|Yt′<t)‍� (1)

where ‍Xt′<t‍ and ‍Yt′<t‍ denote the sets of variables, ‍Xt′‍ and ‍Yt′‍, taken at earlier time points ‍t′‍ than ‍t‍.
While Equation 1 is asymmetric upon ‍X ‍/‍Y ‍ permutation, a simple comparison of Transfer Entropy 

asymmetry (e.g., ‍TX→Y > TY→X ⩾ 0‍) does not necessarily translate into causal direction as this asym-
metry is also expected for non-causal relations. Interestingly, this is in fact the absence of Transfer 
Entropy in one direction (e.g.,‍TZ→X ≈ 0‍), which suggests the possibility of a causal relation in the 
opposite direction, ‍X → Z ‍, as in the case of v-structures in graph-based causal discovery methods, 
provided that a latent common cause can be excluded between the two variables (as discussed above).

We clarify in Theorem 1 this relation between temporal causality without reference to any structural 
model (Equation 1) and structural causality entailed by time-unfolded causal graphical models (‍Gt‍). 
This highlights the common foundations of temporal and structural causalities beyond their seemingly 
unrelated definitions.
Theorem 1. [‍TY→X = 0‍ implies temporal (2-variable + time) v-structures]

If ‍Xt‍ is adjacent to ‍Yt‍ in ‍Gt‍ and ‍TY→X = I(Xt; Yt′<t|Xt′<t) = 0‍, then for all ‍Yt′‍ adjacent to ‍Yt‍ in ‍Gt‍ , with 
‍t′ < t‍, there is a temporal (2-variable + time) v-structure, ‍Yt′ → Yt ← Xt‍ , in ‍Gt‍ (Figure 2a).
Proof: If ‍TY→X = I(Xt; Yt′<t|Xt′<t) = 0‍, then all pairs ‍(Xt, Yt′ )‍ should be unconnected (assuming ‘faith-
fulness’, i.e., no coincidental cancellation of effects) and all unshielded triples ‍Yt′ − Yt − Xt‍ should be 
temporal v-structures, ‍Yt′ → Yt ← Xt‍ , as ‍Yt /∈Xt′<t‍ in ‍TY→X = I(Xt; Yt′<t|Xt′<t) = 0‍.‍□‍

Theorem 1 can be readily extended to include the presence of other observed variables, ‍Vt′⩽t‍, by 
redefining Transfer Entropy as ‍TY→X = I(Xt; Yt′<t|Xt′<t, Vt′⩽t)‍, which discards contributions from indirect 
paths through other observed variables, ‍Vt′⩽t‍.

https://doi.org/10.7554/eLife.95485
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Note, however, that the converse of Theorem 1 is not true: a temporal v-structure does not imply 
a vanishing Transfer Entropy, as shown with the counterexample in Figure 2b. As a result, the pres-
ence of a temporal v-structure, ‍Yt′ → Yt ← Xt‍ in ‍Gt‍, does not necessarily imply a vanishing Transfer 
Entropy, ‍TY→X = 0‍, as long as there remains an edge between any ‍Yt′′‍ and ‍Xt‍, as in the example in 
Figure 2b. Hence, Granger–Schreiber causality is in fact too restrictive and may miss actual causal 
effects, which can be uncovered by structural causal discovery methods like tMIIC. In addition, Grang-
er–Schreiber causality is also known to infer spurious causal associations by excluding the presence of 
latent common causes a priori. By contrast, tMIIC includes time-delayed as well as synchronous effects 
originating from unobserved latent variables, as discussed above.

Benchmarking of CausalXtract’s causal discovery module (tMIIC)
The performance of CausalXtract’s causal discovery module (tMIIC) has been assessed using Tigramite 
package (Runge, 2020), which provides different methods to learn temporal causal networks from 
time-series data. We compared tMIIC to two methods capable of orienting contemporaneous edges 
(PC and PCMCI+) and tested three different kernels for estimating mutual information (Parcorr, GPDC, 
and KNN). Benchmark networks and datasets have been chosen to resemble the real-world data 
analyzed in this study (i.e., similar number of time steps, network size, and degree distribution) and 
include a large range of linear and nonlinear relations between variables.

A first series of datasets was generated for a 15-node benchmark network (Figure 2—figure supple-
ment 1a) with linear combinations of contributions inspired by the Tigramite package (Appendix 1). 
Running times and scores (Precision, Recall, Fscore) have been averaged over 10 datasets (Figure 2—
figure supplement 1b) and show that tMIIC scores are at par with PC and PCMCI+ using GPDC or 
KNN kernels but that tMIIC runs orders of magnitude faster, which enables to use tMIIC on much 
larger datasets of biological interest including a few tens or hundreds of thousands samples. Only 
PC or PCMCI+ using ParCorr kernel match tMIIC running speed but with significantly lower scores, 
as Fscores level off around 0.6–0.7 at large sample size, while tMIIC Fscore exceeds 0.9 (Figure 2—
figure supplement 1b).

Importantly, increasing the number of time-lagged layers from ‍τ = 2‍ (as in the actual model) to 
5 or 10 layers in the inferred time-unfolded network (Figure 2—figure supplement 2) leads to very 
similar network reconstructions for simulated stationary data. This demonstrates tMIIC insensitivity 
to an overestimated maximum lag for the reconstituted network. Interestingly, however, when the 
generated data is no longer stationary, increasing the number of layers leads to multiple self-loops 
at nonstationary variables, whilst the rest of the network remains relatively unaffected (Figure 2—
figure supplement 3). It demonstrates that CausalXtract’s causal discovery module is robust to the 
presence of nonstationary variables but requires long-time range interactions, and therefore multiple 
time-lagged layers, to account for these nonstationary dynamics at specific variables. This striking 
observation on benchmark networks is also consistent with the multiple self-loops observed for a 
number of nonstationary variables in the real-world application on cellular ecosystems (Figure 3a, 
Figure 1—figure supplement 1).

A second series of more complex datasets was also generated for another 15-node benchmark 
network (Figure 2—figure supplement 4a) with nonlinear combinations of contributors (Appendix 2). 
Here, tMIIC tends to outperform both PC and PCMCI+ in terms of Recall and Fscores, while remaining 
orders of magnitude faster compared to GPDC and KNN kernels. Only PC or PCMCI+ using ParCorr 
kernel match tMIIC running speed but with significantly lower scores (i.e., Fscores level off around 
0.4–0.5 at large sample size, while tMIIC Fscore exceeds 0.8). This demonstrates that CausalXtract’s 
causal discovery module (tMIIC) is both a reliable and scalable method to discover complex temporal 
causal relations in very large time-series datasets including a few hundred thousand samples.

Code availability
The source code of CausalXtract is available at https://github.com/miicTeam/CausalXtract, copy 
archived at miicTeam, 2024. It includes a demo R markdown notebook of CausalXtract pipeline, 
which reproduces step-by-step the results reported in the article (Figure 3), starting from the original 
live-cell time-lapse images of the tumor-on-chip ecosystem (Figure 1a). The Tigramite package used 
for benchmark comparison is available at https://github.com/jakobrunge/tigramite, copy archived at 
Runge, 2024.

https://doi.org/10.7554/eLife.95485
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The following dataset was generated:
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Parrini MC 2023 CausalXtract: a flexible 
pipeline to extract causal 
effects from live-cell time-
lapse imaging data
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Appendix 1
This appendix contains the mathematical details of the 15-node model with linear combinations of 
variables.

Nodes

‍X
1
t ← −0.47 f2(X1

t−1) + 0.29 f3(X2
t−1) × η1‍

‍X
2
t ← 0.49 f2(X2

t−1) + 0.4 f1(X1
t−2) + η2‍

‍X
3
t ← 0.56 f1(X3

t−1) + 0.44 f4(X4
t−2) − 0.26 f2(X10

t−2) + 0.56 f2(X4
t ) + η3‍

‍X
4
t ← 0.24 f3(X4

t−1) − 0.24 f2(X6
t−2) − 0.12 f4(X14

t−1) × η4‍
‍X

5
t ← −0.39 f3(X5

t−1) − 0.42 f3(X5
t−2) − 0.39 f3(X11

t ) + η5‍
‍X

6
t ← −0.32 f2(X6

t−1) + η6‍
‍X

7
t ← −0.17 f4(X7

t−1) − 0.17 f1(X7
t−2) + η7‍

‍X
8
t ← 0.39 f4(X8

t−1) − 0.46 f4(X7
t−1) − 0.39 f3(X1

t−1) − 0.4 f3(X12
t−2) + η8‍

‍X
9
t ← −0.34 f1(X9

t−1) + 0.43 f3(X12
t−2) + η9‍

‍X
10
t ← 0.2 f1(X10

t−1) + 0.18 f4(X9
t−2) + 0.17 f1(X9

t−1) + 0.48 f3(X7
t−1) − 0.26 f4(X4

t−1) + η10‍
‍X

11
t ← 0.41 f2(X11

t−1) + 0.54 f3(X2
t ) − 0.55 f2(X12

t ) + η11‍
‍X

12
t ← −0.45 f2(X12

t−1) − 0.43 f4(X3
t−2) − 0.17 f4(X9

t−2) × η12‍
‍X

13
t ← 0.45 f3(X13

t−1) + η13‍
‍X

14
t ← 0.28 f2(X14

t−1) + 0.37 f1(X12
t−2) × η14‍

‍X
15
t ← 0.52 f3(X15

t−1) + η15‍

Functions

‍f1(x) = x‍

‍f2(x) = x (1 − 4 e
−

x2

2 )‍

‍f3(x) = x (1 − 4 x3 e
−

x2

2 )‍
‍f4(x) = cos(x)‍

Noises
The ‍η‍ are white noises generated for each node or contribution using a normal distribution: 
‍η ∼ N (0, 1)‍

https://doi.org/10.7554/eLife.95485
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Appendix 2
This appendix contains the mathematical details of the 15-node model with nonlinear combinations 
of variables.

Nodes

‍X
1
t ← η − 0.7 f6(u(η + X1

t−1)) − 0.87 f5(u(η + (X14
t−1 × X1

t−2)))‍
‍X

2
t ← η + 0.65 f1(u(η + X2

t−1)) − 0.63 f3(u(η + X2
t−2)) + 0.79 f3(u(η + X5

t−1))‍

‍

X3
t ← η − 0.76 f5(u(η + X3

t−1)) − 0.59 f6(u(η + X7
t−1)) − 0.85 f2(u(η + X15

t−1))

−0.89 f5(u(η + (X13
t−2 × X7

t−1))) ‍

‍X
4
t ← η − 0.7 f6(u(η + X5

t−1)) − 0.86 f2(u(η + X8
t−2)) + 0.53 f1(u(η + (X4

t−1 × X9
t−2)))‍

‍X
5
t ← η + 0.54 f2(u(η + (X14

t−1 × X6
t−2)))‍

‍

X6
t ← η − 0.85 f2(u(η + X6

t−1)) − 0.79 f3(u(η + X3
t−2)) + 0.59 f1(u(η + X4

t−1))

+0.75 f3(u(η + X1
t )) + 0.57 f2(u(η + X14

t−1)) ‍

‍X
7
t ← η + 0.74 f1(u(η + X7

t−1)) + 0.54 f6(u(η + X9
t−1)) − 0.53 f2(u(η + (X9

t−1 × X7
t−1)))‍

‍

X8
t ← η × (−0.63 f1(u(η + X6

t−1)) + 0.81 f5(u(η + X13
t )) + 0.53 f6(u(η + (X6

t−2 × X6
t−1)))

−0.69 f6(u(η + (X13
t × X6

t−1)))) ‍

‍X
9
t ← η + 0.79 f3(u(η + X4

t−2)) + 0.69 f6(u(η + (X9
t−1 × X15

t−1)))‍
‍X

10
t ← η + 0.54 f6(u(η + X10

t−1))‍

‍

X11
t ← η + 0.83 f6(u(η + X11

t−1)) − 0.76 f4(u(η + X13
t−1)) − 0.73 f3(u(η + X2

t−1))

+0.74 f2(u(η + X4
t )) − 0.87 f2(u(η + X10

t−2)) + 0.72 f4(u(η + X12
t−1))

−0.73 f1(u(η + (X10
t−2 × X13

t−1))) ‍

‍X
12
t ← η + 0.7 f3(u(η + X10

t−1)) − 0.55 f5(u(η + X9
t )) − 0.54 f5(u(η + (X12

t−1 × X10
t−1)))‍

‍X
13
t ← η − 0.62 f3(u(η + X14

t−2)) − 0.61 f1(u(η + (X13
t−1 × X14

t−2)))‍
‍X

14
t ← η − 0.78 f6(u(η + X14

t−1))‍

‍

X15
t ← η − 0.68 f4(u(η + X15

t−1)) + 0.85 f4(u(η + X15
t−2)) − 0.6 f5(u(η + X10

t−2))

+0.68 f6(u(η + X14
t−1)) + 0.81 f4(u(η + (X14

t−1 × X10
t−2))) ‍

Functions

‍u(x) = max(−1, min(1, x))‍

‍f1(x) = x‍

‍f2(x) = x (1 − 4 e
−

x2

2 )/1.52387‍

‍f3(x) = 4 x2
‍

‍f4(x) = 8 x3
‍

‍f5(x) = 16 x4
‍

‍f6(x) = cos(πx)‍

Noises
The ‍η‍ are white noises generated for each node or contribution using a normal distribution: 
‍η ∼ N (0, 0.1)‍.

https://doi.org/10.7554/eLife.95485
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