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Generating synthetic data from medical records is a complex task intensified by patient privacy
concerns. In recent years, multiple approaches have been reported for the generation of synthetic
data, however, limited attention was given to jointly evaluate the quality and the privacy of the
generated data. The quality and privacy of synthetic data stem from multivariate associations across
variables,which cannot be assessedbycomparing univariate distributionswith theoriginal data.Here,
we introduce a novel algorithm (MIIC-SDG) for generating synthetic data from electronic records
based on a multivariate information framework and Bayesian network theory. We also propose a new
metric to quantitatively assess the trade-off between theQuality andPrivacyScores (QPS) of synthetic
data generation methods. The performance of MIIC-SDG is demonstrated on different clinical
datasets and favorably compares with state-of-the-art synthetic data generation methods, based on
the QPS trade-off between several quality and privacy metrics.

With the significant increase in patient recruitment for clinical trials and the
collection of real-life health-related datasets over the past few decades,
ensuring patient privacy has become of utmost importance. Indeed, facil-
itatingnew research initiatives andpromotingdata sharing are necessary for
pushing the boundaries of biomedical research. Machine learning and deep
learning approaches offer promise in synthesizing health data while safe-
guarding patient privacy. However, existing regulatory standards, including
the European General Directive on Data Protection (GDPR), often impose
restrictions on data sharing and secondary data usage due to concerns about
data security.

The primary and secondary use of sensitive data must not only
comply with local legislations, but also align with the initial patient
consent to safeguard personal privacy. Data publication needs to
guarantee Statistical Disclosure Control (SDC), referring to techniques
able to ensure that no person is identifiable from the published data.
This includes two possible cases: (i) identification disclosure when an
attacker is able to link some data to a specific individual and (ii)
attribute disclosure when the attacker is able to learn new information
on the subject, by using prior knowledge and the information con-
tained in the data.

Classical anonymization techniques like k-anonymity, first introduced
by Latanya Sweeney and Pierangela Samarati1 in 1998, protect user data by
minimizing the risk of re-identification, while keeping in theory a good level
of data utility. K-anonymity is obtained through data suppression and data
generalization, so that each person in the collection cannot be distinguished
from at least k-1 individuals by using quasi-identifier features (attributes
available to an adversary). Machanavajjhala and colleagues showed
k-anonymity to be vulnerable to some attacks when using background
knowledge2 and proposed a newprivacy criteria, named l-diversity. In 2007,
Li and colleagues published a novel privacy criteria named t-Closeness, with
even stronger properties for privacy preservation3. In addition to being
computationally expensive4 and requiring prior knowledge to be able to
anonymize the data, these classical tools are shown to deteriorate the data
distribution, making them no longer exploitable in many situations.

Together with traditional anonymization techniques, recent techno-
logical advances in artificial intelligence, notably in generativemodeling, led
to the development of synthetic tabular data generation (SDG) algorithms4.
SDG is performed by training amachine learningmodel on a real data set to
generate synthetic data thatmimic the original dataset. This process is done
by learning the underlying data distribution and using it to generate
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synthetic samples. A vast number of methods have been developed over the
last decade for synthetic tabular data generation4. Among the algorithms
that can deal with mixed type data, combining categorical, discrete and
continuous variables, are Classification and Regression Trees (CARTs),
Bayesian Networks5 and Variational Autoencoders (VAE).

In addition, recent advancements in Deep Learning have led to the
emergence of a new category ofmethods known asGenerative AI. This field
encompasses various techniques, including Generative Adversarial Net-
works (GANs) and Diffusion-based models. Initially developed for gen-
erating high-quality images, significant progress has been made to apply
these methods to tabular data, particularly Electronic Health Records
(EHRs), which offer a vast amount of data for training such models.

Notably, there are Wasserstein-GAN models, such as EMR-WGAN6

and medWGAN7 (derived from medGAN8 model), that are specifically
designed for generating high-quality samples from electronic medical
records. More recently, diffusion-based models like EHRDiff 9 and
MedDiff 10 have also been adapted to generate synthetic health data, similar
to the work done with GAN models.

A recent review4 reported multiple methods for tabular data generation
with a focus on the healthcare application context showing that there is no
universal method or metric to evaluate and benchmark the performance of
various approaches, both in termsof quality andprivacypreservation. Several
algorithms11,12 havebeen reported togeneratehighfidelitydatawhile showing
an optimal level of privacy but looking at data quality primarily through the
prism of similarity of univariate distributions between the synthetic and
original data. However, the richness of information in a dataset stems from
the intricate multivariate associations among variables. These associations
also contribute to privacy concerns, as combinations of quantitative variables
canpotentiallybe exploited to re-identify individuals.Therefore, it is crucial to
consider the trade-off between data quality and data privacywhen evaluating
synthetic data generationmethods, particularly in the context of clinical trials
for which the number of patients and controls are typically limited.

As synthetic data generation algorithms do not create anonymized
versions of the original samples but rather generate entirely new data that
capture the statistical properties of the original dataset, metrics suited to
traditional anonymization, like k-anonymity, are therefore not applicable in
this context. We thus chose to use other relevant metrics, adapted from the
identifiability and the membership inference scores, to assess the effec-
tiveness in preserving the privacy of the original data.

The evaluation of data quality in synthetic tabular datasets, highlighted
in a recent survey13, emphasizes the significance of metrics such as inter-
dimensional relationship similarity, latent distribution similarity, joint
distribution similarity, and prediction similarity. Recognizing the impor-
tance of capturing these aspects comprehensively, our benchmarks incor-
porate differentmetrics across a range of variable scales. At univariate scale,
we perform chi-square andWilcoxon tests.We then considermetrics in the
bivariate context, using correlation andmutual information, andmetrics in
themultivariate context, withWasserstein distance, to thoroughly assess the
quality of synthetic datasets.

The existence of a privacy-utility trade-off in synthetic data has already
been recognized and investigated14. We quantify this trade-off in our
benchmarking by introducing a Quality-Privacy Score (QPS) which com-
bines different quality and privacymetrics to evaluate synthetic health data.

This paper serves two purposes: First, we propose a novel synthetic
tabular data generation algorithm specifically suited for health records. It is
based on the results of the Multivariate Information-based Inductive Cau-
sation (MIIC) algorithm15,16 that has been shown to reliably capture mul-
tivariate relations across features. Second, we use multiple quality and
privacy metrics and introduce a trade-off measure between these two
complementary metrics, with the aim of comparing state-of-the-art syn-
thetic healthcare data generation algorithms.

Methods
In this section we first describe our novel synthetic data generation
method: the MIIC-SDG algorithm is able to generate synthetic data

that accurately captures the underlying multivariate distribution of
the original data, without duplicating the data. The method is based
on the reconstruction of a bayesian network that preserves direct
associations and causal relationships from the original dataset. In the
second part we review existing algorithms for synthetic tabular data
generation and compare their performance over two real life
benchmark datasets. Finally, we discuss metrics for evaluating quality
and privacy of synthetic data, individually and jointly.

The proposed method, MIIC-SDG, takes advantage of the MIIC
algorithm15–18 (MIIC network reconstruction) which can reliably capture
the set of direct associations in complex heterogeneous datasets such as
healthcare medical records. MIIC-SDG expands on the MIIC algorithm by
adding anewalgorithm that transforms a graph into adirected acyclic graph
(MIIC-to-DAG) as well as a synthesizer (MIIC synthesizer) that takes into
account the joint multivariate distribution associated with the data to gen-
erate high-quality samples that mimic the original data.

MIIC-SDG algorithm is composed of three steps, as shown in Fig. 1:
A. MIIC: Inferring a graphical model associated with the original dataset

using MIIC algorithm.
B. MIIC-to-DAG: Creating a directed acyclic graph (DAG) using the

previously inferred network.
C. MIIC-synthetizer: Generating synthetic samples based on the DAG

and the original data by using several approaches that depend on the
nature of parents and children nodes in the graph.
The MIIC-SDG algorithm is available as an R package, allowing the

user to create synthetic versions of the original data inside a secured
environment, without requiring any personal data to be transmitted to a
web-server.

MIIC network reconstruction
The MIIC (Multivariate Information-based Inductive Causation) is an
algorithmthat infers a graphical network to represent thedirect andpossibly
causal associations between variables in a dataset15,16. The algorithm has the
ability to estimate conditional mutual information, even when the dataset
includes a mixture of categorical and continuous variables. MIIC does not
havehyperparameters and is not sensible to the order of features in the input
data. It can estimate the set of associations between variables in the presence
of missing data without the need of an a priori data imputation technique.
MIIC has proven to be robust to sampling noise and to reliably estimate
(conditional) mutual information. These features have been demonstrated
in multiple benchmarks16,19.

The MIIC-generated graph is composed of both directed and undir-
ected edges, and may contain directed cycles, a common characteristic of
causal discovery constraint-based methods. The directed edges result from
identifying v-structures15 (A→ B←C), where two independent and thus
unconnected variables are linked to a third one. Additionally, directed edges
can result from the propagation of orientations fromupstream v-structures.
However, propagated orientations do not necessarily indicate causal
associations.

MIIC is available through a web-server18 and an R package and has
been recently applied to a breast cancer cohort of 1200 patients treated at
Institut Curie, Paris17, as well as a larger cohort of 400,000 breast cancer
patients from the SEER database16,19. MIIC provides a novel way to globally
visualize, analyze, and understand the connections between well-known
clinical features.

MIIC DAG generation
In this study, we expand MIIC’s ability to learn unparameterized network
structures by incorporating a framework capable of generating synthetic
data fromaMIICreconstructed graph.This approach takes advantageof the
Bayesian framework, where the starting point is a DAG that can be para-
metrized using the original data. In this scenario, prior to data generation,
the initial graphhas to be transformed into aDAG.To this end, we designed
and implemented a new algorithm, MIIC-to-DAG, that orients all undir-
ected edges and removes all directed cycles from the original graph
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reconstructed by MIIC, while retaining most v-structures and propagated
orientations from the originalMIICnetwork,whenever possible. This limits
the impact ofMIIC-to-DAGon the causal relationships and/or associations
found from the real data. In particular, the propagation of orientations used
by MIIC ensures that all remaining undirected edges in the MIIC structure
can be oriented in either direction without adding new v-structures in the
MIIC-DAG,unless suchorientations create cycles. Indeed, orientating these
undirected edges does not change the actual associations between the
implicated variables, despite changing their causal relations, due to global
Markov equivalence between the corresponding graphs.

MIIC-to-DAG algorithm consists in two steps: first, we orient each
undirected edge in the MIIC network so as to minimize the number of
directed cycles and possibly avoid them. Then, we remove all directed cycles
from the graph, if some are present. In order to guarantee the removal of all
the cycles of the graph,MIIC-to-DAG iteratively considers the longest cycle
in the graph (the one with themost edges) and flips the edge thatminimizes
the number of remaining cycles in the graph. Taking the longest cycle
guarantees the removal of at least one cycle at each iteration and therefore
convergence towards a DAG. The pseudocode of the MIIC-to-DAG pro-
cedure is presented in Supplementary Fig. 9. Beyond the visualization of the

Fig. 1 | MIIC-SDG pipeline. This illustration shows the complete data generation
process, from the original data table to the generated data, following the 3main steps
described in section “MIIC network reconstruction” of Methods. a Execution of the
MIIC algorithm from the original data table. This step generates a graphwhere nodes
represent the variables of the data matrix and edges represent direct associations
between variables. b Transformation of the graph into a directed acyclic graph

(DAG) through the MIIC-to-DAG algorithm. c Generation of the data using the
original data table and the reconstructed DAG. dDetails on the data generation step:
each scenario takes into account the variable type of the target and parents nodes to
adapt the sampling procedure (branches (a–f) are described in the section “MIIC-
synthetizer” of Methods. RF: Random Forest; Cond. Prob. Table: Conditional
Probability Table; Prob. Table: Probability Table; Emp. Dens.: Empirical density).
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MIIC reconstructed network, the MIIC web server also enables the visua-
lization of the DAG generated by the MIIC-to-DAG algorithm, by loading
the list of directed edges available in the output of the execution of theMIIC-
SDG algorithm. This step allows the user to inspect the DAG and to check
the associations used to generate the data for each single variable. Details are
present in the manual of MIIC-SDG (code availability section). The
visualization of the causal network is possible at the following address:
https://miic.curie.fr/vis_NL.php.

MIIC synthesizer
In this extension of the MIIC algorithm, the data generation component
leverages the DAG structure obtained in the second step. The MIIC-SDG
synthesizer follows the same concept of other algorithms based on Bayesian
assumptions, where the sampling is initialized from variables associated
with isolated or orphan nodes and then iteratively expands to nodes whose
parents have already been generated. To address the presence ofmixed-type
variables in the original data, specificmodifications have been implemented
for the data generation algorithm.

There are different scenarios depending on the nature of the parent(s)
(P) variable(s) and the target (T) variable:
1. T discrete - P discrete : this corresponds to classical Bayesian network

algorithms where a multivariate conditional probability table for the
target variable (child node) is estimated from the original data and then
used to sample synthetic data based on parents values (brancha of Fig.
1d). When the target variable is a root node or an isolated node, the
sampling is done directly from the target original probability table
(branch b of Fig. 1d).

2. T discrete - P continuous/mixed: we implemented this scenario with
two different methods (branch c of Fig. 1d). On the one hand, if
the number of continuous parents is low (<3), continuous dis-
tributions are discretized using an optimum discretization
algorithm from the MIIC framework16 that maximizes the
mutual information between each parent and the target variable.
This approach has shown to reliably estimate theoretical mutual
information and to be adaptive to the number of samples and
multimodal continuous distributions. We then applied the same
method described in the first scenario to sample the target dis-
tribution. This method circumvents the difficulty of directly
predicting a strongly unbalanced discrete variable with a clas-
sification model when the number of continuous predictors
is low.
On the other hand, when the number of continuous parents is higher

(3 ormore), we choose to resort to a random forest classificationmodel
to predict the target variable, as it is able to capture non-linear
associations between multiple predictors without having to discretize
continuous parents.

3. T continuous - P discrete: in this scenario we estimate the density of the
continuous target for each combination of discrete parents and sample
from the empirical estimated density (branch d of Fig. 1d). In case the
target variable is a root node or an isolated node, the sampling is done
directly on the estimated density of the original variable (branch e of
Fig. 1d).

4. T continuous - P continuous/mixed : this case is addressed with two
methods (branch f of Fig. 1d): first, if the number of continuous
parents is low (<2), we use the optimum discretization algorithm from
the MIIC framework and then learn and reproduce the density of the
continuous target for each combination of discrete or discretized
parents. If the number of continuous parents is higher (2 or more), we
implement a random forest regressionmodel to predict the continuous
target node.

It is important to notice that missing values are represented as an extra
category for discrete and categorical variables and hence reproduced in the
synthetic generated data. For continuous variables, where densities

estimation or classification/regression are applied, no missing value is
generated for the synthetic feature.

Benchmark algorithms
MIIC-SDG. As detailed above, MIIC-SDG is composed of three steps: (A)
discovers a network structure from the input data, (B) transforms this
network into aDAGusingMIIC-to-DAGalgorithm and (C) uses thisDAG
and the original data to generate synthetic samples resembling the original
data. The whole algorithm is detailed in the ‘Methods’ section “MIIC net-
work reconstruction”.

Bayesian. This method builds a probabilistic graphical model (Bayesian
network) that represents the joint multivariate distribution by exploiting
dependencies between random variables20. In this framework, a DAG and a
corresponding conditional probability distribution are learned from the
given data. Sampling from the model is finally performed to generate a
synthetic dataset.We used the code provided in the Synthcity21 package that
uses the pgmpy package by Ankur and Abinash20. The DAG is obtained
using the tree search (Chow–Liu tree) or hill climbing algorithms.

Synthpop. The Synthpop algorithm, developed in 2016 by Nowok and
colleagues, is amachine learning solution designed to generate synthetic test
data for users who work with confidential datasets22. The synthetic data,
generated through parametric and nonparametric methods, including the
classificationand regression trees (CART)model, aims tomimic theoriginal
data and can be used for exploratory analyses and for testing models.
However, theCARTmodelmay result infinal leaveswith a small number of
individuals, potentially compromising the privacy of the synthesized data.
The authors suggest limiting this effect by specifying aminimumsize for the
final node produced by the CART model, though determining the appro-
priate value for this parameter is challenging as it is data-dependent and the
method does not offer a tuning procedure.

CTGAN. CTGAN (Conditional Tabular Generative Adversarial Networks)
is a deep learning algorithm published by Xu and colleagues in NeurIPS
2019, that aims at creating a generative model suitable for tabular data.
CTGANdiffers from traditional GANs by adding a conditional structure to
both the generator and the discriminator networks, allowing it to generate
synthetic samples based on specific real-world conditions. Authors have
reported CTGAN outperforming Bayesian methods on most of the real
datasets they presented23.

TVAE. Tabular Variational AutoEncoders are adapted from classical var-
iational autoencoders (VAE)23 to enable the generation of mixed-type tab-
ular data. This method was also used as a benchmark in the CTGANpaper.
Authors claim thatCTGANachieves competitive performance acrossmany
datasets and outperforms TVAE on some benchmarks.

PrivBayes. PrivBayes is a differentially private Bayesian network model
capable of efficiently handling datasets with a large number of attributes24.
Authors present the package as a new implementation that requires the
injection of less noise compared to other differential privacy algorithms,
maintaining more signal in the synthetic data. To obtain differentially pri-
vate synthetic data, PrivBayes starts by creating a Bayesian network that
succinctly represents the correlations among the attributes and then injects
noise into each marginal distribution to ensure differential privacy. The
method finally uses these noisy marginals and the bayesian network to
generate synthetic samples. The most important parameter for the algo-
rithm is epsilon, determining the amount of noise injected in the marginal
distributions.However, the choice of epsilon is not straightforward since the
level of both quality andprivacy of the generateddata depends on the typeof
distributions, number of samples and complexity of the Bayesian network.
For this benchmark, we choose an epsilon equal to 1 as it showed to be the
best compromise in our simulations.
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MedWGAN. medWGAN7 is a modified version of the medGAN model8.
The medGAN model is a generative adversarial network for generating
multi-label discrete patient records. It can generate both binary and count
variables (i.e. medical codes such as diagnosis codes, medication codes or
procedure codes). The modified medWGAN version introduced a Was-
serstein GAN with gradient penalty as alternatives to the GAN in the
medGAN framework. Among other benefits, the Wasserstein GAN offers
an improved training stability by addressing mode collapse and enhanced
gradient flow through techniques that stabilize and maintain a consistent
gradient throughout the network. These advantages make WGAN a valu-
able approach in generative modeling tasks, enabling the generation of
diverse and high-quality samples.

Random in range. This naive approach is used as a lower bound for nor-
malizing the other benchmarkmethods. The “synthetic dataset” is obtained
by generating randomdata using uniformdistributions (inside the ranges of
the original data). For categorical data it corresponds to a random sampling
with replacement from all possible levels of categories of each feature. For
continuous variables the sampling is made using the minimum and max-
imum values as ranges and sampling within the range with a uniform
distribution.

In choosing these benchmark algorithms, we intentionally selected
ones that employ different techniques for generating synthetic tabular data.
A critical common feature among these chosen methods is their use of
sampling from an estimated true joint distribution for data anonymization.
This shared approach provided a foundation for comparing the perfor-
mance of our method with these established benchmarks.

Algorithms parameters. To compare to other approaches, we used the
default parameters further detailed in Supplementary Table 1.

During the initial step ofMIIC-SDG, we employed specific parameters
of the MIIC algorithm to facilitate the generation of the most oriented
network. This involved enabling both orientation and propagation. We
deliberately avoided the exploration of latent variables, deeming them less
crucial for generating newdata from the resultant network. Additionally, we
opted not to implement any filtering on edge confidence, aiming to capture
the most information on associated variables. Finally, KL-distance was
enabled during the search for confounders in the presence ofmissing data, a
crucial consideration when dealing with a substantial amount of
missing data.

Assessing quality with distance metrics and predictive perfor-
mances. In order to compare the methods, we have defined and com-
puted several metrics for different settings:

Univariate analysis. We assess whether the distribution of each feature
follows the samedistribution in the original and synthetic datasets. Todo so,
we used a chi-squared test to compare categorical variables and aWilcoxon
test to compare continuous variables, with a significance level set to 0.05.

We use the chi-square test to determine if there is a significant dif-
ference between observed and expected frequencies across different cate-
gories. This test is commonly used to check for independence or association
between categorical variables, assuming the variables are independent and
the expected frequencies are not too small. In our case, we aim to have
similar frequencies for each category in both the synthetic and original
datasets.

The Wilcoxon test, a non-parametric test, is used to compare con-
tinuous distributions, particularly when the data does not follow a normal
distribution. It does not assume normality and can handle skewed or heavy-
tailed distributions. In our benchmark, we use the Wilcoxon test to verify
that the distributions of the synthetic continuous variables are not statisti-
cally different from those of the original variables.

Correlations. We assess whether the bivariate distributions between each
pair of features are preserved in the synthetic data. We compared the

correlation matrices in the original and synthetic data by computing the
mean absolute difference between the matrices. The analysis is performed
on all variable pairs by calculating their correlation using two approaches.
The lower triangular matrix was determined by computing Pearson’s cor-
relation coefficient between continuous variables and Cramer’s V between
categorical variables. The upper triangular matrix was dedicated to ana-
lyzing the relationship between continuous and discrete variables. To this
end, we used the MIIC algorithm which has been shown to optimally
discretize the continuous features by maximizing the mutual information
for all potential cut-points on the continuous variables. If a discretization
was found (there is a significant correlation between the features), Cramer’s
V was then evaluated between the discrete and discretized variables. Also in
this case the quality is directly associated with the difference between the
correlation matrices. Small differences correspond to data that reliably
capture the structure present in the original data. We define the correlation
distance as the mean absolute difference between Correlation matrices CS

(synthetic) and CD (original) as Eq. (1):

CdðCS;CDÞ ¼ 1
p2

Xp

i¼1

Xp

j¼1

Cij
S � Cij

D
���

��� ð1Þ

with p the total number of variables .

Mutual information (MI). In order to compare bivariate associations
we used mutual information25, which is a measure of dependence
between two variables. The concept of mutual information is linked to
the entropy of random variables, rooted in information theory. MI has
been shown to robustly capture the association between variables even
when their relationship is nonlinear. Just like correlation matrices are
obtained by computing the correlation between variables, MI matrices
are obtained by computing the MI between all variables in the dataset.
We estimated the MI for discrete-continuous or continuous-
continuous variables through the optimum discretization algorithm
implemented in the MIIC package. The quality of the generated data is
directly derived by computing the mean absolute difference between
the MI matrices of the original data and the one of the generated data.
Small differences correspond to data that reliably capture the under-
lying structure present in the original data. As with correlation
matrices, we define the mutual information distance as the mean
absolute difference between Mutual information matrices MIS (syn-
thetic) and MID (original) as Eq. (2):

MIdðMIS; MIDÞ ¼ 1
p2

Xp

i¼1

Xp

j¼1

MIij
S � MIij

D
���

��� ð2Þ

with p the total number of variables .

Multivariate distributions. To assess whether the joint multivariate
distribution is preserved in the synthetic dataset we computed the
Wasserstein distance (earthmover’s distance) between the original and
the synthetic data, using the synthcity21 package. The main advantage
of using Wasserstein compared to other metrics, such as the Kullback-
Leibler divergence for instance, is that it is a proper distance with the
associated properties such as symmetry and does not require both
measures (original and synthetic) to be on the same probability space.
A small Wasserstein distance corresponds to synthetic data that reli-
ably represent the multivariate distribution.

Predictive performances. One way to evaluate the quality of a dataset is
to assess if the generated data can be used to perform classical machine
learning tasks such as supervised learning. We therefore chose to
compare the algorithms based on their capability to build a relevant
machine learning model to predict overall survival using a survival
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random forest model. We also evaluated whether each synthetic
dataset retains robust relationships by comparing variable permuta-
tion importance ranking with the “true” ranking obtained on the ori-
ginal dataset. We made this comparison using survival Random Forest
as the machine learning algorithm. To achieve this, a K-fold cross-
validation approach (K = 5) was employed, where for each fold, the
model was trained on 75% of the synthetic data and evaluated on a 25%
hold-on test from the real data (the samples in the hold-out test set were
selected to ensure that they were not used for training the gen-
erative model).

Assessing privacy metrics by identifiability score and membership
inference. In this study we implemented different approaches to identify
the level of privacy for each synthetic data generationmethod. In 2006 the
paradigm of differential privacy was introduced and is still to date one of
the most used techniques to try to preserve data privacy through math-
ematical constraints26. However, differential privacy has been shown to
not fully mitigate the risk of re-identification. Stadler and colleagues have
shown that under certain circumstances, neither the original imple-
mentation of PrivBayes nor PATEGAN27 (Private Aggregation of Tea-
cher Ensembles Generative Adversarial Network) reliably prevents
linkage attacks, leaving some samples vulnerable to membership infer-
ence attacks28. Moreover, it has been reported in many scenarios that
strong differential privacy constraints lead to the generation of synthetic
data exhibiting a disrupted correlation structure between features,
making the resulting data problematic24 (Fig. 3).

Revisiting Identifiability score (IS). To ensure data privacy, generated
synthetic patient records should be “different enough” from the original
patient records. Following this idea, we used a framework for the eva-
luation of privacy risks developed by Yoon and colleagues who proposed
a new concept for identifiability29. Yoon and colleagues define an iden-
tifiability property related to theminimumdistance between real patients
and the distance between real and synthetic samples. In order to weight
each feature according to its probability of identifying patients having the
same values, authors used a weighted Euclidean distance asmetric, giving
more weight to features having an unbalanced distribution of events.
Authors define ε-identifiability as the property of having less than ε ratio
observations from the original dataset in the generated synthetic dataset
that are “not different enough” from the original observations. ε corre-
sponds to the defined identifiability score. In this scenario, an identifia-
bility of zero would represent a perfectly non-identifiable (private)
dataset and an identifiability of one would represent a perfectly identi-
fiable dataset. The proposed identifiability is defined for all the samples or
variables. The described identifiability distance is implemented in the
Synthcity package. The derived privacy score is then defined as 1 -
identifiability score.

Adapting membership inference score (MIS). Secondly, inspired by
the work of El Emam K et al.30 and J. Yoon et al.29, we also proposed to
compute a membership inference metric. We used the partitioning
membership disclosure attack method proposed by El Emam K and
colleagues where, instead of using the hamming distance between sam-
ples as a similaritymeasure, we used aweighted Euclidean distancewhere
the weights are defined as the entropy of each feature, as proposed by J.
Yoon et al.29.

Moreover, to ensure a reliable distance metric with mixed variables
(a combination of variables with either categorical or continuous domains),
we have taken the following additional steps:
• Apply a Multiple Factor Analysis for Mixed Data (using the Facto-

MineR package31) to reduce the dimensionality of the data.
• Compute theEuclideandistance between samples in the space of the 10

first principal components as a similarity measure. It has the benefit of
keeping the notion of Euclidean distance valid and meaningful.

This score evaluateswhetherwe are able to identifywhichpatientswere
used to create the synthetic dataset by subsampling the original dataset into a
training and test set, for varying sample size. The derived privacy metric is
then defined as 1 - membership inference score.

Trade off between Quality and Privacy: the Quality-Privacy
Score (QPS). Literature results32 and our findings manifestly suggest
the necessity of a trade-off between data quality and data privacy. On the
one hand, small modifications of the original data are directly associated
to good quality scores but to poor privacy ratings, since almost all the
information of the dataset is maintained. On the other hand, strong
perturbations or noise addition lead to a net loss on quality of the syn-
thetic data with a concomitant gain on privacy.

This problem is analogous to the classicalmachine learningdilemmaof
obtaining good precision and recall scores, simultaneously, which calls for
defining a trade-off measure such as the F1 score measure, defined as the
harmonic mean between precision and recall scores as Eq. (3)

F1 ¼ 2×
Precision×Recall
Precisionþ Recall

ð3Þ

Inspired by the F1 score definition, we formulated a version of quality
versus privacy trade-off by adapting the classical F1 formula above. This
requires defining data quality and privacy scores in the range [0,1], where
best score values correspond to 1.

To this end, we normalized each quality and privacy metric by a
reference value, namely those computed on the data generated by the
Random method.

We define as normalized quality each of the previously described
quality measures divided by the corresponding reference value as Eq. (4):

QðMISÞ ¼ 1 � MIdðMIS; MIDÞ
MIdðMIR ; MIDÞ ; ð4Þ

whereQðMISÞ is the normalized quality formutual information of synthetic
dataset, MIS;MID, and MIR are the mutual information matrices of,
respectively, the synthetic data, the original data, and the random data, and
MIdðX;YÞ is themutual information distance betweenmutual information
matrices X and Y , as defined in “Results”.

We define similarly the normalized quality forWasserstein distance as
Eq. (5):

QðWp
SÞ ¼ 1 � WpðX S; XDÞ

WpðXR ;XDÞ ; ð5Þ

where QðWp
SÞ is the normalized quality for Wasserstein distance of the

synthetic dataset,X S,XD,XR are the distributions of the synthetic, original
and random datasets respectively and WpðX ;YÞ is the Wasserstein
p-distance between distributions X and Y.

Finally we define the normalized quality for correlation distance as
Eq. (6):

QðCd
SÞ ¼ 1 � CdðCS ; CDÞ

CdðCR ; CDÞ ; ð6Þ

where QðCd
SÞ is the normalized quality for correlation distance of the

synthetic dataset, CS, CD, CR are the correlation matrices of the synthetic,
original and random datasets and CdðX;YÞ is the correlation distance
between correlation matrices X and Y , as defined in “Methods”.

In the same way, normalized privacy is defined as Eq. (7):

NPIS ¼ 1 � ISS
ISR

; ð7Þ
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with ISS 2 ½0; 1� and ISR 2 ½0; 1� the identifiability scores of the synthetic
and random datasets respectively.

Similarly we define the normalized membership inference score, as
Eq. (8):

NPMIS ¼ 1 � MISS
MISR

; ð8Þ

withMISS 2 ½0; 1� andMISR 2 ½0; 1� the membership inference scores of
the synthetic and random datasets respectively.

In this setting, we define our Quality-Privacy scores as the harmonic
mean of the normalized quality and privacy scores, as Eq. (9):

QPS ¼ 2 ×
NQ � NP
NQþ NP

; ð9Þ

with NQ 2 fQMID
; QW ; QCd

g and NP 2 fNPMIS; NPISg:
In addition, to facilitate benchmark comparison between different

synthetic data generationmethods, we have also designed two global scores
to highlight the performance across the 3 quality metrics (Wasserstein,
Mutual Information, correlation) and the 2 privacy metrics (Membership
inference and identifiability) used in this study.We will refer to these global
scores asMetaQPSam andMetaQPShm in the rest of the paper.

MetaQPSam corresponds to the F1-score between the arithmetic mean
of the quality scores and the arithmetic mean of the privacy scores, defined
as:

metaQPSam ¼ 2 ½3=ðQMID
þ QW þ QCd

Þ þ 2=ðNPMIS þ NPISÞ��1

ð10Þ
MetaQPShm corresponds to the F1-score between the harmonic mean

of the quality scores and the harmonic mean of the privacy scores, defined
as:

metaQPShm ¼ 2 Q�1
MID

þ Q�1
W þ Q�1

Cd

h �
=3

�

þðNP�1
MIS þ NP�1

ISÞ=2
��1

ð11Þ

MetaQPSam andMetaQPShm could be readily adapted to include other
quality and privacy scores, if needed. Hence, the rationale of theMetaQPS
metrics is to first take the arithmetic or harmonicmeans over all quality and
privacy scores, separately, before quantifying the global quality versus
privacy trade-off using an F1-scoremeasure.While theMetaQPSam metric,
based on arithmetic means tends to equally weigh the contributions of each
quality and privacy scores, the MetaQPShm metric, based on harmonic
means, gives more weights to lower individual quality and privacy scores
and is therefore expected to be more sensitive to the most discriminative
quality and privacy scores.

Benchmark datasets. This paper aims to provide a comprehensive
benchmark specifically focused on the anonymization of small, complex
datasets with high privacy risks. To ensure the relevance and robustness
of the comparison, we intentionally included a diverse range of methods
including Bayesian and constraint-based approaches as well as Deep
learning methods. However, it is important to note that Deep Learning
methods like CTGAN, medWGAN, and TVAE require larger sample
sizes for effective convergence. To address this specificity, we chose to
incorporate three datasets of various sizes to assess the performance of
each method on a wide range of sample sizes (from 100 to 20,000
patients).

Breast cancer (METABRIC). TheMETABRIC (Molecular Taxonomy of
Breast Cancer International Consortium) dataset is a collection of over
2,000 clinically annotated primary breast cancer specimens obtained
from tumor banks in the UK and Canada33. The cohort encompasses

clinical variables and genetic information including copy number
alterations, copy number variations, and single nucleotide polymorph-
isms. The METABRIC dataset was selected for this study due to its
widespread usage and validation in the literature, as well as its suitable
sample size for the application of machine learning algorithms and
coexistence of numerical and categorical features. The original dataset,
consisting of 2491 patients and 36 variables, was pre-processed by
removing patients with >20% missing values and variables with unique
values. The resulting filtered dataset comprised 1977 patients and 29
clinical variables, with 19 of them being discrete and 10 continuous.
Figure 2 reports theDAGobtained by using theMIIC-to-DAG algorithm
(step 2B in Fig. 1), whichwas applied on the network reconstructed by the
MIIC algorithm, shown in Supplementary Fig. 2. The graph contains 63
edges reporting direct association between the 29 variables. Unconnected
nodes represent features that are not associated with any other variable in
the data (following MIIC residual mutual information evaluation). It is
important to remember that the MIIC algorithm does not have hyper-
parameters, does not need any tuning, can deal with missing data and is
not sensible to the order of features in the data. The used data comes from
public data available in the cBioPortal repository: https://www.
cbioportal.org/study/summary?id=brca_metabric.

Details about theMETABRICpatient population, consents, approvals,
tissue collection and sample processing are provided in the publication by
Curtis et al.33 All patient specimens were obtained with appropriate consent
from the relevant institutional review board. The data are available at the
European Genome-phenome Archive (http://ebi.ac.uk/ega/), which is
hosted by the European Bioinformatics Institute, under accession numbers
EGAS00000000083.

Bladder cancer. To extend our assessment of synthetic data generation
approaches, we integrated a second dataset derived from a Roche clinical
trial on bladder cancer (Phase II single-arm study IMvigor21034). The
study investigated metastatic urothelial cancer treatment with the anti
PD-L1 agent atezolizumab and highlighted key factors influencing out-
comes, such as the presence of a CD8+ T-effector cell phenotype and the
burden of neoantigens and tumormutations. These known key outcomes
were then also used as a quality metric in our assessment.

IMvigor210 was a multicentre, single-arm, phase 2 trial that investi-
gated efficacy and safety of atezolizumab in metastatic urothelial cancer.
This trial was done in 47 academic medical centers and community
oncology practices across seven countries inNorthAmerica andEurope.All
patients provided written informed consent before study entry. The study
was done in accordance with the Declaration of Helsinki and International
Conference ofHarmonizationGoodClinical Practice guidelines. The trial is
registered with ClinicalTrials.gov under the following number:
NCT02951767 for cohort n°1 and NCT02108652 for cohort n°2. The
protocol was approved by institutional review boards or independent ethics
committees at participating study sites. The data has been made available
through an R package on the following website: http://research-pub.gene.
com/IMvigor210CoreBiologies/.

This addition enriches our benchmarkwith a second real and practical
use case coming from our organization. It also helps validate the overall
applicability of our approach to different sets of data, varying both in
dimensionality and in the types of variables analyzed. Specifically, IMvi-
gor210 included 310 participants with 297 known outcomes. We further
restricted the benchmark to 24 features keeping a balanced mix of con-
tinuous and discrete variables.

Diabetes. Diabetes is among the most prevalent chronic diseases,
impacting around 500million people worldwide. Diabetes is a serious
chronic disease in which individuals lose the ability to effectively regulate
levels of glucose in the blood, and can lead to reduced quality of life and
life expectancy.

To test our algorithm on larger sample sizes, we added a third dataset
related to Diabetes. This dataset originates from the 2015 Behavioral Risk
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Factor Surveillance System (BRFSS) dataset, sourced from telephone sur-
veys, encompassing USA residents’ health behaviors, conditions, and socio
economic aspects35. As stated by the Behavioral Risk Factor Surveillance
System, data and materials produced by federal agencies are in the public
domain and may be reproduced without permission.

It is often used for machine learning purposes and is also publicly
available on Kaggle, the version we used is available at this address: https://
www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset.

It contains factors influencing diabetes disease and other chronic
health conditions related to diabetes. The full dataset contains
253680 samples and 22 features.

Benchmark setting. We evaluated the different algorithms by sub-
sampling the whole 1977 sample METABRIC dataset in different sub-
sample sizes: 50, 100, 200, 500, 1000, 1500 and 1977. This allows one to
assess the performance of each method in multiple subsets along with
their stability.We created 10 datasets for each sample size and each one of
themwas used to generate 10 synthetic datasets with a different seed (100
datasets for each sample size). It is important to note that seed effects are
different in each algorithm. For the IMvigor210 studywe chose to analyze

the dataset in subsets of 100, 200 and 297 samples. For Diabetes, we
analyzed the algorithm performances on larger sample sizes: 500, 1000,
5000, 10000 and 20000.

Results
Univariate distribution comparison as a per variable analysis
When comparing two datasets that share the same set of features, the
simplest analysis we can conduct involves assessing the distribution of each
variable within both the original and synthetic datasets. Table 1 presents the
average count of features that exhibited statistically significant differences
based on these two tests across various sample sizes (columns) and algo-
rithms (rows). The standard deviation is provided in parentheses. The
results indicate that Synthpop is the most effective method for replicating
univariate distributions, followed closely by Bayesian algorithms andMIIC-
SDG, which demonstrated similar performance. Conversely, the other
algorithms fell short in reproducing the univariate distribution, with
between 16 (CTGAN and TVAE) and 21 features exhibiting differences in
the largest sample size. As expected, the random method flagged nearly all
variables as different, owing to its random sampling approach within the
original feature range.

Table 1 | Average number of significantly different features between real and synthetic distribution on METABRIC dataset

N = 50 N = 100 N = 200 N = 500 N = 1000 N = 1500 N = 1977

MIIC-SDG 1.3 (1.3) 0.8 (0.9) 1.1 (0.9) 1.7 (1.6) 2.5 (1.6) 4.3 (2.7) 3.8 (1.2)

Synthpop 0.3 (0.5) 0.2 (0.4) 0.3 (0.7) 0.8 (0.8) 0.3 (0.7) 0.3 (0.7) 0.5 (0.7)

Bayesian tree search 0.1 (0.3) 0.9 (0.9) 1.7 (0.5) 2.0 (0) 2.4 (0.5) 2.6 (1.3) 2.0 (0)

Bayesian hill climbing 0.3 (0.5) 0.9 (0.9) 1.8 (0.4) 2.1 (0.3) 2.0 (0) 2.9 (0.6) 2.0 (0)

PrivBayes 11.3 (2.8) 16.2 (1.1) 18.1 (2.2) 17.2 (4.4) 15.8 (2.1) 20.7 (3.6) 21.0 (0)

CTGAN 6.8 (2.7) 8.5 (3.4) 10.9 (2.5) 12.8 (4.2) 15.6 (4) 16.0 (2.9) 16.3 (2.7)

TVAE 4.5 (1.8) 5.1 (2.4) 10.1 (3.2) 14.6 (4.7) 19.9 (4) 16.4 (3.7) 15.9 (2.1)

RandomInRange 13.6 (2) 19.2 (1) 22.9 (1.5) 26.0 (0.9) 26.6 (0.7) 27.2 (0.8) 27.5 (0.5)

medWGAN 5.4 (1.3) 7.0 (0.9) 7.8 (1.1) 11.0 (2.3) 14.5 (2.1) 16.5 (2.4) 16.7 (1.9)

This analysis was made using chi-squared or Wilcoxon tests, with a 0.05 p-value threshold. Standard deviation is reported in parentheses. Top method for each sample size is reported in bold font.

Fig. 2 | Network reconstructed by MIIC-to-DAG starting from the network
obtained by MIIC from the full METABRIC dataset. The network is learned with
the MIIC-to-DAG algorithm (step B of MIIC-SDG) starting from the network
obtained by MIIC, Supplementary Fig. 1, with the parameters defined in

Supplementary Table 1. This network corresponds to the directed acyclic graph used
to generate the synthetic data for the step C of MIIC-SDG. This network is visible at
the following address: https://miic.curie.fr/job_results_NL.php?id=
METABRIC_DAG.

https://doi.org/10.1038/s41746-025-01431-6 Article

npj Digital Medicine |            (2025) 8:49 8

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://miic.curie.fr/job_results_NL.php?id=METABRIC_DAG
https://miic.curie.fr/job_results_NL.php?id=METABRIC_DAG
www.nature.com/npjdigitalmed


Bivariate analysis to assess associations between variables
Mutual Information (MI) distance. Mutual information distances are
evaluated by calculating the mutual information difference between real
and synthetic data, evaluating it for all pairs of variables. The results are
presented in Supplementary Fig. 2. The data generated by theMIIC-SDG
algorithm reproduces well the mutual information between variables
present in the original data, obtaining better scores than other methods
for small sample sizes (50 and 100 samples). With an increasing number
of samples the mutual information is best reproduced by Synthpop, with
MIIC-SDG positioning at second or third place (close to bayesian tree
search). MedWGAN scores at the fourth place. CTGAN obtained the
lowest score on the smallest sample size, and eventually improved its
performance with larger sample sizes. TVAE and the Bayesian hill
climbing technique scored closely on the largest datasets, with Bayesian
hill climbing reaching the fourth or fifth position in smaller samples
(<500 samples).

Correlations (Corr) distance. Supplementary Figure 3 reports the
correlation distances, defined in “Methods”, between synthetic data
and the corresponding original data. It can be observed that the
Bayesian tree search and Synthpop algorithms have comparable per-
formances, both for low and high sample sizes. MIIC-SDG has better
results than competitors on small sample sizes (<200 samples) but the
gain in performance obtained by increasing sample sizes stabilizes at
higher values compared to the first two competitors. CTGAN obtained
low scores for smaller sample sizes (<500 samples), but the perfor-
mance increases fast with increasing the number of samples, obtaining
similar scores to MedWGAN. TVAE fails to capture the correlation
structure, even if it is improved with 1500 samples. Bayesian hill
climbing with BIC criterion does not obtain competitive scores, even
with large sample sizes. PrivBayes exhibit similar results to the random

datamethod, showing a complete loss of correlation patterns. Globally,
MIIC-SDG, CTGAN and MedWGAN obtained similar scores at large
sample sizes.

The correlation matrices for the METABRIC datasets (using
1000 samples) are shown inFig. 3.Values are obtained as amean correlation
over all executions fromrunning the algorithmson the 1000 sample datasets
(using bootstrap) and using multiple seeds.

The performance of the different methods are, in order: Bayesian
with tree search algorithm, Synthpop, CTGAN, MIIC-SDG and medW-
GANwith the same score, TVAE and PrivBayes. As expected, the score of
the randommethod is by far the lowest one and it is strongly dependent on
the type of associations between variables that exist in the original data
(correlation structure and strength). As shown in Supplementary Fig. 12,
we compare the correlationmatrices for the Diabetes dataset in a scenario
where the correlation structure is much sparser, with only a few features
being correlated. In this context, using the mean correlation distance to
differentiate between algorithms is less meaningful. Random values can
exhibit a low mean correlation distance because most features are
uncorrelated, and introducing random values does not significantly
impact the overall correlation. Therefore, in such cases, distinguishing
between algorithms in terms of correlation distances becomes more
challenging.

Multivariate distribution comparisons as a global metric to
evaluate quality
Wasserstein distance. The results of the multivariate Wasserstein
distance assessments are presented in Supplementary Fig. 4. In this
multivariate setting the Bayesian network approach with tree search
estimation reached the best scores with very small distances, followed by
Synthpop and medWGAN at similar scores, MIIC-SDG at the fourth
place, and Bayesian hill climbing (using BIC criterion), with CTGANand
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Fig. 3 | Correlation matrices evaluated on 1000 samples for METABRIC dataset. Correlation for each x, y combination is evaluated as the mean value over all executions
with the same sample size.
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TVAE in similar ranges. The differential privacy bayesian approach with
epsilon set to 1 generates datasets with much higher distances compared
to the other benchmarked methods.

From these results, we can notice that there are large gaps between the
different methods, with the Bayesian (tree search estimation) approach
giving much better results than competitors. In Supplementary Fig. 4, we
can observe that the Bayesian tree search approach generates synthetic
categorical variables on the METABRIC dataset that closely resemble the
original distribution. However, the performance difference is less pro-
nounced for continuous variables. The Bayesian approach demonstrates
overall good performance, which can be attributed to the METABRIC
dataset being predominantly composed of categorical variables. This gives
an advantage to methods that excel in handling such variable types.

When computing the Wasserstein distance using only continuous
features, we observe that Bayesian tree search obtains indeed similar scores
with respect to Synthpop and MIIC-SDG. Similarly, MedWGAN obtains
good scores mostly on categorical variables, but performs slightly less well
on continuous variables, whichmight be due to the low sample size used to
train the model.

Machine learning performance: Predicting Overall Survival (OS)
response
The aim of this part is to evaluate the ability of synthetic data generation
algorithms to preserve multivariate information for the purpose of pre-
dicting survival features. Figure 4 represents the feature importance for the
prediction ofOverall Survival (SO) in the original data and in all benchmark
algorithms.We note thatMIIC-SDG, Synthpop, CTGAN andmedWGAN
all predict the same three main features (Nottingham Prognostic Index,

Number of positive lymphatic nodes andTumor size) as themost important
features for OS prediction. Figure 5 shows the concordance index estimates
from Survival Random Forest model to predict Overall Survival. While
MIIC-SDGdoes not outperform a number of benchmarkmethods in terms
of OS prediction, it is important to keep inmind that the ability to predict a
target variable (OS in this case) from other features can also be used as a
metric for privacy risk, as it can be seen as an inference attack on sensitive
attributes. Having a high concordancewith the true data also correlates to a
high risk in the case of inference attacks.

Re-identification as a metric to evaluate privacy level
Identifiability score. The identifiability score corresponds to the prob-
ability of re-identification given the combination of all data on any
individual patient. It is evaluated by measuring the identifiability of the
finite original patient data using the finite generated synthetic data.
Supplementary Figure 5 shows the privacy score of the synthetic data
generation algorithms evaluated as (1 - Identifiability), as a high iden-
tifiability score indicates low privacy. The Bayesian algorithm with tree
search has the lowest privacy scores (0.23–0.44), followed by the
Synthpop algorithm (0.44–0.49), MIIC-SDG (0.45–0.6), TVAE
(0.47–0.76), CTGAN (0.59–0.81), Bayesian with hill climbing
(0.71–0.87), PrivBayes (0.94–0.99) and Random (0.97–1), with numbers
between parenthesis corresponding to the smallest and biggest sample
sizes. Interestingly, the random algorithm did not reach 1 for the smallest
sample sizes.

Membership inference score. The membership inference score cor-
responds to the probability of identifying which patients have been used

Fig. 4 | Features permutation importance to predict overall survival.Weused a Survival RandomForestmodelfitted on a set of 1977 patients from theMETABRICdataset.

https://doi.org/10.1038/s41746-025-01431-6 Article

npj Digital Medicine |            (2025) 8:49 10

www.nature.com/npjdigitalmed


to generate the synthetic dataset. Supplementary Figure 6 shows the
privacy score of the synthetic data generation algorithms evaluated as (1 -
membership score), as a high membership score indicates low privacy.
Bayesian tree search algorithm is the method with lowest privacy as it is
easy to guess if a sample has been used or not to generate the synthetic
data, followed by the Synthpop method, where privacy scores never
increase above 0.5.MIIC-SDG remains at the third position, with privacy
scores increasing well with larger sample sizes. CTGAN obtains slightly
better results in the membership inference attack, together with TVAE.
Bayesian hill climbing generates datasets where it is hard to guess the
membership of samples in the original data, while PrivBayes and the
random algorithm obtain best privacy scores, with values close to 1.

Quality-Privacy Scores (QPS) as a trade-off between quality and
privacy
Quality-Privacy scores can be evaluated by using different metrics for both
quality andprivacy. Both dimensions have been evaluatedby calculating the
ratio between the value obtained using the data of each algorithm and the
value obtained using the corresponding random data, so that both quality
and privacy range in [0,1] (normalized formula). For quality measures we
focused on the normalized Mutual Information distance that reliably cap-
tures bivariate associations and clearly discriminates the different approa-
ches. As privacy metrics we considered the results obtained with the
identifiability and the membership inference scores, in their normalized
version. QPS are then obtained by taking the harmonic mean of the nor-
malized quality and privacy scores, for each combination of quality-privacy
measures, as introduced in the Method section. In addition, in order to
facilitate the comparison of synthetic data generation methods across
multiple quality and privacy scores, we also introduced two global QPS
metrics, metaQPSam andmetaQPShm, based, respectively, on the arithmetic
means and harmonic means of several quality scores and privacy scores, as
detailed in Methods.

In Fig. 6 we show the mutual information quality metric and the two
privacy scores as well as the two derived QPS (one for each privacy metric).

Based on the QPS derived from mutual information distance, the MIIC-
SDGmethod is ranked as the best algorithm in terms of the quality-privacy
trade-off for both QPS metrics. It is only outperformed by Synthpop for
large sample sizes when considering the Membership inference as the
privacy score. However, it is important to notice that the privacy evaluated
from the identifiability score is always smaller than 0.5 for Synthpop, a value
much lower to the one obtained throughMIIC-SDG, ranging in 0.6–0.7 for
higher sample sizes (>200 samples). This makes synthetic data generated
with Synthpop significantly less private than synthetic data generated with
MIIC-SDG. The QPS obtained using MI distances thus highlights MIIC-
SDG ability to reliably generate quality synthetic data while best preserving
the privacy of the original sensitive data.

We also analyzed the results obtained with the other quality distances,
the two privacy measures and the corresponding QPS (4 supplementary
metrics). These complete results are shown in Supplementary Fig. 7. MIIC-
SDG algorithm obtained the best QPS results for correlation distance for
small sample sizes (<500 samples) and obtained the second or third best
scores after the CTGANandmedWGAN for the largest sample sizes. Based
on the QPS obtained using the Wasserstein distance and Identifiability
scores, the Bayesian hill climbing algorithm emerges as the top-performing
method, followed closely byCTGAN,MIIC-SDG, andTVAE, all exhibiting
similar scores. In this scenario Synthpop does not show competitive results
due to a poor privacy score. Bayesian tree search and PrivBayes score poorly
aswell, thefirst due to a lowprivacy score and the seconddue to a lowquality
of the generated data.

We then run the same pipeline on the second dataset (IMvigor210),
presented in Fig. 7, obtaining comparable results to the ones on the
METABRIC data. Also in this case MIIC-SDG shows better results than
competitors based on themutual information QPS, reporting a good trade-
off between quality and privacy scores. Supplementary Figure 10 provides
detailed information on the QPS, quality, and privacy scores for the IMvi-
gor210dataset. In this scenario,MIIC-SDGscores rank eitherfirst or second
in terms of QPS (and third when tied with Synthpop), using correlation as
the distancemetric. However, QPS ranks usingWasserstein distance do not

Fig. 5 | K-Fold Cross-validated c-index estimates.
This analysis was made using a Survival Random
Forest model to predict Overall Survival in the
METABRIC dataset in function of sample
size (K = 5).
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effectively differentiate between the best methods, which all perform
essentially the same, as observed on the METABRIC dataset.

Finally, we benchmarked the different synthetic data generation
methods on a larger dataset, Diabetes (500 to 20,000 samples). The results
reported in Supplementary Fig. 11 show that MIIC-SDG shares, together
with Synthpop, the top-ranking QPS score based on mutual information,
with MedWGAN also reaching similar high scores at large sample sizes
(>1000 samples). However, the three methods cannot be seen as equivalent
in all contexts, as Synthpop exhibits a significantly higher quality with
concomitant lower privacy, whereas medWGAN exhibits a higher privacy
but lower quality overall. By contrast,MIIC-SDGappears to achieve a better
balance between privacy and quality defined in terms ofMI distances.Using
other qualitymetrics,MedWGANis shown to achieve the bestQPS tradeoff
based on correlation distance but the worst Wasserstein distance overall.
Yet, as with thefirst two datasets, theWasserstein distance did not provide a
discriminative ranking of the best performing methods.

Figure 8 summarizes these results by integrating all quality and privacy
scores into single metaQPS metrics for each dataset and all sample sizes
analyzed in this study. This figure demonstrates the good overall perfor-
mance of MIIC-SDG algorithm, particularly at small sample sizes, while
other state-of-the-art methods, such as Synthrop, CTGAN and medW-
GAN, achieve better or similar performance at large sample sizes. Among
the Bayesian methods included in this study, Bayesian hill climbing and
Bayesian tree search exhibit somewhat lower performance, but significantly
outperform privBayes. This suggests that the incorporation of differential
privacy into privBayes adversely impacts the overall quality of the generated
synthetic data. All in all, we note that the metaQPShm metric, based on the
harmonicmeans of the quality andprivacy scores, provides amore stringent
evaluation of synthetic data generation methods by highlighting the most

discriminative quality and privacy scores integrated in the global
metaQPShm metric. By contrast, the arithmetic means of individual quality
and privacy scores integrated in the metaQPSam metric tend to be less
discriminative. We would therefore recommend using the metaQPShm
metric to integrate several quality and / or privacy scores in future com-
parative studies of synthetic data generation methods.

Discussion
Over the past few decades, there has been a significant increase in the
recruitment of patients for clinical trials and the collection of real-life health-
related datasets. This surge has been witnessed in both public institutions and
private companies, resulting in the accumulation of vast amounts of patient
information.As the number of collected studies continues to grow, it becomes
increasingly urgent to explore effective solutions for harnessing this wealth of
data. This entails facilitating new research initiatives and promoting data
sharing, all with the ultimate goal of pushing the boundaries of medical
research. In recent years, various machine learning and deep learning
approaches have been employed to synthesize health data. These approaches
hold the promise of enabling data sharing while safeguarding patient privacy.
Regulatory standards such as the European General Directive on Data Pro-
tection (GDPR) mandate that data holders implement robust measures to
ensure data security and prevent potential data breaches, often leading to
restrictions on data sharing and secondary data usage. However, few estab-
lished standards exist to guarantee adequate data anonymization and data
security. Previously proposed methods like k-anonymity, l-diversity, and
t-closeness have limitations when it comes to preserving privacy while
maintaining sufficient data quality for research purposes. Therefore, the
development of new quantitative standards is imperative to facilitate data
anonymization through the generation of synthetic data and assess the level of
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risk associated with data publication. Synthetic data generation offers several
opportunities that can be categorized as follows: firstly, as a tool for colla-
borative projects thanks to the straightforward and time-efficient sharing of
data; secondly, as a pre-production platform for development; and finally, for
deriving insights from data. The first two application types typically do not
necessitate the faithful reproduction of complex statistical features found in
theoriginaldatasets.However, thegenerationof insights relieson the synthetic
data generator’s ability to preserve intricate data patterns, including those not
yet identified in the original dataset. Indeed, the estimation of the joint mul-
tivariate distribution of clinical trials is a hard task due to the limited sample
size of suchdatasets. It is therefore crucial to identify synthetic data algorithms
that are able to operate on such a scale and provide meaningful results.

In order to identify a suitable algorithm for synthetic data generation
applicable to biomedical/clinical data, it is essential to consider the pre-
servation of data quality and the protection of privacy simultaneously. To
address this challenge, we conducted a comprehensive evaluation of the
various state-of-the-art algorithms across multiple scenarios, examining
data quality and privacy both separately and more importantly in combi-
nation. To evaluate the impact of sample size on each algorithm’s perfor-
mance, we used datasets of varying sizes: small (ranging from 50 to 200
samples), medium (500–2000 samples), and large (5000–20000 samples).

Our approach involved the following steps:

1. Defining Quality Metrics: we first established various metrics for
assessing the preservation of data quality. These metrics were
designed to gauge the ability of the methods to generate data that
closely resembles the original dataset. One of the most used
methods to compare data have been performed through the
Pearson correlation coefficients. However, Pearson correlation is
also known to be very sensitive to outliers, which may explain
some of the apparent good relative rankings of certain methods
under correlation scores, while they exhibit poorer performance
under more robust statistical criteria such as MI, which only
depends on the ranks (not the specific values) of the variables of
interest. We hence focused our analysis on MI, but we also pre-
sented results using the more classical correlation concept.

2. Privacy Considerations: we then focused on the privacy of the original
sensitive data. Our aim was to prevent the re-identification of patients
and safeguard against the disclosure of sensitive patient information.

3. Defining trade-off metrics: To provide a comprehensive assessment of
the sensitive synthetic data generated, we proposed to combine the
quality and privacy metrics. The resulting combination of metrics
introduced in the paper defines novel pairwise and global quality-
privacy scores, the QPS and metaQPS metrics, which we used to rank
all the algorithms included in our benchmark.
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Our novel SDG method (MIIC-SDG) provides good overall
performance in terms of quality-privacy tradeoff, especially at small
sample size, while other state-of-the-art methods, such as Synthrop,
CTGAN, and medWGAN, achieve better or similar performance at
large sample sizes, Fig. 8. MIIC-SDG, which integrates graph learning
and information theoretic approaches, retains complex association
patterns, including those that remain undiscovered in the original
dataset, making it suitable for extracting novel insights from sensitive
biomedical data. Other methods approximating the full joint dis-
tribution, such as Synthpop, are also capable of preserving these
complex association patterns, although they typically present a
higher risk of patient re-identification. By contrast, methods that
focus on preserving more limited aspects of the data, like first-order
correlations, are not well-suited for novel insight generation,
although they may suffice for pre-production algorithmic develop-
ment purposes. Furthermore, it is important to keep in mind that
SDG methods utilizing GAN or VAE approaches, such as CTGAN,
medWGAN and TVAE, require large sample sizes to achieve stable
results. This characteristic explains why they tend to achieve lower
performance on small datasets, such asMetabric and IMvigor210. On
the other hand, on larger datasets, such as Diabetes, GAN approaches
achieve performance at par with the best SDG methods in terms of
QPS ranking.

These results confirm that Deep Learning approaches are definitely
relevant when the sample size is large enough to properly train them, as
already evidenced by their success in generating synthetic ElectronicHealth
Records (EHR) from datasets with tens of thousands of records6,7,12. How-
ever, in the specific context of small and complex biomedical datasets,

typically found in clinical studies, the relevance and benefits of Deep
Learning approaches is not as apparent, especially in terms of information
preservation.

MIIC-SDG stands out particularly well for generating synthetic data-
sets that contain mixed data types and a low number of samples (<1000), a
characteristic typically observed in actual clinical datasets. The method is
also well-suited for handling longitudinal data, where measurements are
taken at various time points.

This paper also introduces novel pairwise and global quality-privacy
scores (QPS and metaQPS), which aim to quantify the tradeoff between
quality and privacy measures in the evaluation of synthetic health data
generation methods. These scores are designed to be bounded between 0
and 1 such that a QPS = 0 represents a randomized dataset. However, while
reaching the theoretical maximum value of 1 may be difficult or impossible
in practice, these scores can still be used to compare and rank different SDG
methods, similar tohowrelativeF1-scores areused to compare and rankML
methods.

An important feature of pairwise QPS metrics is their focus on a
specific pair of quality and privacy scores. Indeed, SDG methods need
to be assessed in context and certain quality or privacy criteriamight be
preferable to others in different contexts. For instance, while Synthpop,
MIIC-SDG and medWGAN shared top-ranking QPS scores based on
mutual information on the Diabetes dataset (Supplementary Fig. 11),
the three methods cannot be seen as equivalent in all contexts. Indeed,
Synthpop exhibits a significantly higher quality with concomitant
lower privacy, whereas medWGAN exhibits a higher privacy but lower
quality overall (Supplementary Fig. 11). Hence, MIIC-SDG appears to
achieve a better balance between privacy and quality defined in terms of

IMvigor210 Metabric Diabetes
M

etaQ
P

S
.am

M
etaQ

P
S

.hm

10
0

20
0

29
7 50 10
0

20
0

50
0

10
00

15
00

19
77 50 10

0

20
0

50
0

10
00

50
00

10
00

0

20
00

0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

M
et

aQ
P

S
 s

co
re

MIIC−SDG

Synthpop

Bayesian tree search

Bayesian hill climbing

PrivBayes

CTGAN

TVAE

medWGAN

Fig. 8 | Meta-QPS scores of each dataset (IMvigor210, Metabric and Diabetes).
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monic mean of the privacy scores (see details in Methods).
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MI distances, which likely stems from the information-based approach
employed by MIIC.

By contrast, MedWGAN was found to achieve the best QPS tradeoff
based on correlation distance but the worst Wasserstein distance overall
(Supplementary Fig. 11). As correlation measures are well known to be
highly sensitive to outliers, this may explain the favorable results of GAN
methods with correlation quality metrics in general. Instead, MI is only
sensitive to the rank (not the specific values) of variables, making it a much
more robust quality score to outliers in the data. Finally, quality metrics
derived from Wasserstein distances were found to be less discriminative
thanMI distances for ranking the best performingmethods, which all reach
similar Wasserstein scores in general.

To facilitate the overall comparison of SDG methods, we also intro-
duced global performance scores integrating multiple quality and privacy
scores. These metaQPS metrics provide a global indicator of each algo-
rithm’s performanceacross all relevantquality andprivacy scores andhealth
datasets included in this study, Fig. 8. The twometaQPSmetrics come with
advantages and disadvantages. The metaQPSam metric, based on the
arithmetic means of individual quality and privacy scores, equally weighs
the contributions of each quality andprivacymetrics. This tends to overlook
the differences between SDG methods by masking their limitations on the
most stringent quality or privacy measures. By contrast, the metaQPShm
metric, basedon the harmonicmeans of the quality andprivacy scores, gives
more weight to the most stringent quality and privacy scores. Hence, the
metaQPShmmetric is more conservative and better suited to highlight the
differences between alternative SDG methods, due to its sensitivity to the
most discriminative quality and privacy scores. MetaQPShm should
therefore be favored in future comparative studies of SDG methods inte-
grating several quality and / or privacy scores.

This study comes with limitations. First, we performed benchmark
comparisons across a wide range of SDG methods and could not therefore
include all available approaches beyond a few representatives of each class of
SDG methods with open access and readily usable codes. Second, these
benchmark comparisons are limited to three datasets and might not gen-
eralize to all possible health data, although we have tried to cover a wide
variety of health datasets, including a broad range of sample sizes and
mixed-type (continuous and categorical) variables. Third, this study pri-
marily focused on a quantitative evaluation of the quality versus privacy
tradeoff of SDGmethods,with the introduction of novel pairwise and global
QPS metrics. Yet, we recognized that other indicators, such as the overall
survival prediction, are also important to assess the relevance of synthetic
health data generation methods. Finally, the membership inference score,
which requires a hold-out set for computation, could not be estimated for
the entire datasets. This limitation could be overcomeby employing a k-fold
cross-validation procedure, as implemented in the TensorFlow Privacy
Membership Inference Attack (MIA) Python library36.

Likewise, the novel MIIC-SDG method reported in this paper has
notable limitations, despites its good performance in terms of global
quality-privacy scores, Fig. 8, especially at small sample sizes. First,
MIIC-SDG does not rank among the best methods in predicting overall
survival (OS) from a Survival Random Forest model, which suggests
potential limitations in predicting specific tasks. Second, while MIIC-
SDG achieves very good performance in terms of quality-privacy tra-
deoff based on mutual information (MI) distances, it does not display
the best performance across all quality metrics. For instance, other
methods such as medWGAN excel when correlation scores are used.
Similarly, MIIC-SDG’s well-balanced performance in terms of quality-
privacy trade-off implies that MIIC-SDG offers mid-range privacy
scores andmight not be themethod of choice for applications requiring
the highest level of data protection.

Considering these limitations and to better reflect the importance of
quality versus privacy criteria in different contexts, a possible extension of
the F1-basedQPS scores, introducedhere,would be to define Fα-basedQPS
scores. This extension would give different relative weights between quality
andprivacy criteria, enabling a stronger emphasis on eitherquality (α < 1)or

privacy (α > 1) of synthetic data. Another possible modification to enhance
the importance of privacy considerations would be to include other privacy
scores, such as the nearest neighbor adversarial accuracy risk developed by
Yale A et al.37, in the global metaQPS metrics.

All in all, MIIC-SDG is particularly effective in generating syn-
thetic data from biomedical datasets, which typically include a limited
number of patients (<1000) and a complex multivariate joint dis-
tribution. In this context, MIIC-SDG tends to outperform or be com-
parable to other state-of-the-artmethods (Fig. 8) with similar execution
times (Supplementary Fig. 8). However, to generate synthetic health
data from very large datasets, such as electronic health records, deep
learning approaches may be more suitable.

Data availability
Nonew samples or human data were collected for the purpose of this study.
All data used is publicly available online. TheMETABRIC data comes from
public data available in the cBioPortal repository: https://www.cbioportal.
org/study/summary?id=brca_metabric. The IMvigor210 dataset34 is pub-
licly available, through an R package, at the following address: http://
research-pub.gene.com/IMvigor210CoreBiologies/. The DIABETES data-
set is publicly available on the CDC website. https://www.cdc.gov/brfss/
annual_data/annual_2015.html or on kaggle: https://www.kaggle.com/
datasets/alexteboul/diabetes-health-indicators-dataset.

Code availability
The MIIC-SDG algorithm is available on github at the following address
https://github.com/miicTeam/miic-sdg as anR package, namedmiicsdg.
It generates the synthetic data as a data frame, and the DAG that is used to
sample the synthetic data. TheDAGcanbe visualizedwith the tool available
in theMIICweb server https://miic.curie.fr/vis_NL.php to better appreciate
the relationships between variables.
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