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Abstract

We propose a greedy search-and-score algorithm
for ancestral graphs, which include directed as
well as bidirected edges, originating from unob-
served latent variables. The normalized likeli-
hood score of ancestral graphs is estimated in
terms of multivariate information over relevant
“ac-connected subsets” of vertices, C, that are
connected through collider paths confined to the
ancestor set of C. For computational efficiency,
the proposed two-step algorithm relies on local in-
formation scores limited to the close surrounding
vertices of each node (step 1) and edge (step 2).
This computational strategy, although restricted to
information contributions from ac-connected sub-
sets containing up to two-collider paths, is shown
to outperform state-of-the-art causal discovery
methods on challenging benchmark datasets.

1. Introduction
The likelihood function plays a central role in the selec-
tion of a graphical model G based on observational data D.
Given N independent samples from D, the likelihood LD|G
that they might have been generated by the graphical model
G is given by (Koller & Friedman, 2009),

LD|G =
1

ZD,G
exp

(
−NH(p, q)

)
(1)

where H(p, q) = −
∑

x p(x) log q(x) is the cross-entropy
between the empirical probability distribution p(x) of
the observed data D and the theoretical probability dis-
tribution q(x) of the model G and ZD,G a data- and
model-dependent factor ensuring proper normalization con-
dition for finite dataset. In short, Eq.1 results from
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the asymptotic probability that the N independent sam-
ples, x(1), · · · ,x(N), are drawn from the model distri-
bution, q(x), i.e. LD|G ≡ q(x(1), · · · ,x(N)) =

∏
i q(x

(i)),
rather than the empirical distribution, p(x). This leads
to, logLD|G =

∑
ilog q(x(i)), which converges towards

N
∑

x p(x) log q(x) = −N H(p, q) in the large sample
size limit, N →∞, with logZD,G = O(logN).

The structural constraints of the model G translate into the
factorization form of the theoretical probability distribution,
q(x) (Pearl & Paz, 1985; Pearl, 1988; 2009; Spirtes et al.,
2000; Richardson, 2009). In particular, the probability dis-
tribution of Bayesian networks (BN) factorizes in terms of
conditional probabilities of each variable given its parents,
as q

BN
(x) =

∏
i q(xi|paXi

), where paXi
denote the val-

ues of the parents of node Xi in G, PaXi
. For Bayesian net-

works, the factors of the model distribution, q(xi|paXi
), can

be directly estimated with the empirical conditional proba-
bilities of each node given its parents as, q(xi|paXi

) ≡
p(xi|paXi

), leading to the well known estimation of
the likelihood function in terms of conditional entropies
H(Xi|PaXi

) = −
∑

x p(xi,paXi
) log p(xi|paXi

),

LD|GBN
=

1

ZD,G
BN

exp
(
−N

vertices∑
Xi∈V

H(Xi|PaXi)
)

(2)

This paper concerns the experimental setting for which some
variables of the underlying Bayesian model are not observed.
This frequently occurs in practice for many applications. We
derive an explicit likelihood function for the class of ances-
tral graphs, which include directed as well as bidirected
edges, arising from the presence of unobserved latent vari-
ables. Tian and Pearl 2002 showed that the probability
distribution of such graphs factorizes into c-components
including subsets of variables connected through bidirected
paths (i.e. containing only bidirected edges). Richardson
2009 later proposed a refined factorization of the model
distribution of the broader class of acyclic directed mixed
graphs in terms of conditional probabilities over “head” and
“tail” subsets of variables within each ancestrally closed sub-
sets of vertices. However, unlike with Bayesian networks,
the contributions of c-components or head-and-tail factors
to the likelihood function cannot simply be estimated in
terms of empirical distribution p(x), as shown below. This
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leaves the likelihood function of ancestral graphs difficult to
estimate from empirical data, in general, although iterative
methods have been developped when the data is normally
distributed (Richardson & Spirtes, 2002; Drton et al., 2009;
Evans & Richardson, 2010; Triantafillou & Tsamardinos,
2016; Rantanen et al., 2021; Claassen & Bucur, 2022).

The present paper provides an explicit decomposition of the
likelihood function of ancestral graphs in terms of multivari-
ate cross-information over relevant ‘ac-connected’ subsets
of variables, Fig. 1., which do not rely on the head-and-tail
factorization but coincide with the parametrizing sets (Hu &
Evans, 2020) derived from the head-and-tail factorization. It
suggests a natural estimation of these revelant contributions
to the likelihood function in terms of empirical distribu-
tion p(x). This result extends the likelihood expression of
Bayesian Networks (Eq. 2) to include the effect of unob-
served latent variables and enables the implementation of a
greedy search-and-score algorithm for ancestral graphs. For
computational efficiency, the proposed two-step algorithm
relies on local information scores limited to the surrounding
vertices of each node (step 1) and edge (step 2). This com-
putational strategy is shown to outperform state-of-the-art
causal discovery methods on challenging benchmarks. This
paper extends a manuscript opted-in at NeurIPS 2024 (La-
grange & Isambert, 2024) to include benchmarks on linear
as well as non-linear continuous models, Figs. 2 & E.2.

2. Theoretical Results
2.1. Multivariate Cross-entropy and Cross-information

The theoretical result of the paper (Theorem 1) is expressed
in terms of multivariate cross-information derived from mul-
tivariate cross-entropies through the Inclusion-Exclusion
Principle. The same expressions can be written between
multivariate information and multivariate entropies by sim-
ply substituting q({xi}) with p({xi}) in the equations be-
low and will be used to estimate the likelihood function of
ancestral graphs (Proposition 3).

As recalled above, the cross-entropy between m variables,
V = {X1, · · · , Xm}, is defined as,

H(V ) = −
∑
{xi}

p(x1, · · · , xm) log q(x1, · · · , xm) (3)

where p({xi}) is the empirical joint probability distribution
of the variables {Xi} and q({xi}) the joint probability dis-
tribution of the model. Bayes formula, q({xi}, {yj}) =
q({xi}|{yj}) q({yj}), directly translates into the definition
of conditional cross-entropy through the decomposition,

H({Xi}, {Yj}) = H({Xi}|{Yj}) +H({Yj}) (4)

Multivariate (cross) information, I(V ) ≡ I(X1; · · · ;Xm),
are defined from multivariate (cross) entropies through
Inclusion-Exclusion formulas over all subsets of variables

(McGill, 1954; Ting, 1962; Han, 1980; Yeung, 1991) as,

I(X) = H(X)

I(X;Y ) = H(X) +H(Y )−H(X,Y )

I(V ) = −
∑
S⊆V

(−1)|S|H(S) (5)

where the semicolon separators are needed to distinguish
multipoint (cross) information from joint variables as in
I({X,Z};Y ) = I(X;Y ) + I(Z;Y ) − I(X;Y ;Z). Be-
low, implicit separators between non-conditioning vari-
ables in multivariate (cross) information will always cor-
respond to semicolons, e.g. as in I(V ) in Eq. 5. Unlike
multivariate (cross) entropies, which are always positive,
H(X1, · · · , Xk) > 0, multivariate (cross) information,
I(X1; · · · ;Xk), can be positive or negative for k > 3, while
they remain always positive for k < 3, e.g. I(X;Y ) > 0.

In turn, multivariate (cross) entropies can be expressed
through the Principle of Inclusion-Exclusion into the same
expression but in terms of multivariate (cross) information,

H(V ) = −
∑
S⊆V

(−1)|S|I(S), (6)

Conditional multivariate (cross) information I(V |Z) are
defined similarly as multivariate (cross) information I(V )
but in terms of conditional (cross) entropies as,

I(V |Z) = −
∑
S⊆V

(−1)|S|H(S|Z) (7)

Eqs. 5 & 7 lead to a decomposition rule relative to a variable
Z, Eq. 8, which can be conditioned on a set of joint variables,
A = {A1, · · · , Am}, with implicit comma separators,

I(V ) = I(V |Z) + I(V ;Z) (8)
I(V |A) = I(V |Z,A) + I(V ;Z|A) (9)

Alternatively, conditional (cross) information, such as
I(X;Y |A), can be expressed in terms of non-conditional
(cross) entropies using Eq. 4,

I(X;Y |A) = H(X|A)+H(Y |A)−H(X,Y |A) (10)
= H(X,A)+H(Y,A)−H(X,Y,A)−H(A)

which can in turn be expressed in terms of non-conditional
(cross) information as,

I(X;Y |A) = I(X;Y )− · · · (−1)k
∑

i1<···<ik

I(X;Y ;Ai1 ; · · ·;Aik)

+ · · · (−1)mI(X;Y ;A1; · · ·;Am)

=

X,Y ∈S′∑
S′⊆S

(−1)|S
′|I(S′), (11)

where S = {X,Y } ∪ A. This corresponds to all (cross)
information terms including bothX and Y in the expression
of the multivariate (cross) entropy, H(X,Y,A), Eq. 6.
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2.2. Graphs and Connection Criteria

2.2.1. DIRECTED MIXED GRAPHS, ANCESTRAL GRAPHS

Two vertices are said to be adjacent if there is an edge (of
any type) between them, X∗ ∗Y , where ∗ stands for any
(head or tail) end mark. X and Y are said to be neighbors
if X Y , parent and child if X → Y and spouses if
X ←→ Y in G.

A path in G is a sequence of distinct ver-
tices V1, . . . , Vn consecutively adjacent in G, as,
V1∗ ∗V2∗ ∗ · · · ∗ ∗Vn−1∗ ∗Vn. In particular, a
collider path between V1 and Vn has the form
V1∗→ V2 ←→ · · · ←→ Vn−1 ←∗Vn and a directed
path corresponds to V1 → V2 → · · · → Vn.

X is called an ancestor of Y and Y a descendant of X if
X = Y or there is a directed path from X to Y , X →
· · · → Y . AnG(Y ) denotes the set of ancestors of Y in G.
By extension, for any subset of vertices, C ⊆ V , AnG(C)
denotes the set of ancestors for all Y ∈C in G.

A directed mixed graph (DMG) is a vertex-edge graph
G = (V ,E) that can contain two types of edges: directed
(→) and bidirected (←→) edges.

A directed cycle occurs if X ∈AnG(Y ) and X←Y . An
almost directed cycle occurs if X∈AnG(Y ) and X ↔ Y .

Definition 1. An ancestral graph is a DMG:
i) without directed cycles;
ii) without almost directed cycles.

An ancestral graph is said to be maximal if every miss-
ing edge corresponds to a structural independence. If an
ancestral graph G is not maximal, there exists a unique
maximal ancestral graph Ḡ by adding bidirected edges to G
(Richardson & Spirtes, 2002).

2.2.2. ac-CONNECTING PATHS, ac-CONNECTED SUBSETS

Let us now define ancestor collider connecting paths or
ac-connecting paths, which entail simpler path connecting
criterion than the traditional m-connecting criterion, dis-
cussed in the Appendix A. Yet, ac-connecting paths and
ac-connected subsets will turn out to be directly relevant
to characterize the likelihood decomposition and Markov
equivalent classes of ancestral graphs.

Definition 2. [ac-connecting path] An ac-connecting path
between X and Y given a subset of variables C (possibly
including X and Y ) is a collider path, X ∗→ Z1 ←→
· · · ←→ ZK ←∗Y , with all Zi ∈ AnG({X,Y } ∪C), that
is, with Zi inC or connected to {X,Y }∪C by an ancestor
path, i.e. Zi → · · · → T with T ∈ {X,Y } ∪C.

Definition 3. [ac-connected subset] A subset C is said to
be ac-connected if ∀X,Y ∈ C, X and Y are connected

(through any type of edge) or there is an ac-connecting path
between X and Y given C.

2.3. Likelihood Decomposition of Ancestral Graphs

Theorem 1. [likelihood of ancestral graphs] The cross-
entropy H(p, q) and likelihood LD|G of an ancestral
graph G is decomposable in terms of multivariate cross-
information, I(C), summed over all ac-connected subsets
of variables, C (Definition 3),

H(p, q) = −
ac−connected∑

C⊆V

(−1)|C|I(C)

LD|G =
1

ZD,G
exp

(
N

ac−connected∑
C⊆V

(−1)|C|I(C)
)

(12)

where N is the number of iid samples in the dataset D and
ZD,G a data- and model-dependent normalization constant.

The proof of Theorem 1 is left to Appendix B. It is based
on a partition of the cross-entropy (Eq. 6) into cross-
information contributions from ac-connected and non-ac-
connected subsets of variables, which does not rely on
head-and-tail factorizations nor on imset formalism1 Hu
and Evans proposed an equivalent result (Proposition 3.3
in (Hu & Evans, 2020)) with a proof using head-and-tail
decomposition to define parametrizing sets, which happen
to coincide with the ac-connected sets defined here (Defini-
tion 3). Theorem 1 characterizes in particular the Markov
equivalence class of ancestral graphs (Richardson & Spirtes,
2002; Richardson, 2003; Ali & Richardson, 2002; Ali et al.,
2005; Tian, 2005; Ali et al., 2009) as,

Corollary 2. Two ancestral graphs are Markov equivalent
iff they have the same ac-connected subsets of vertices.

Note, in particular, that Eq. 12 holds for maximal ancestral
graphs (MAG), for which all pairs of ac-connected variables
are connected by an edge, and their Markov equivalent repre-
sentatives, the partial ancestral graphs (PAG) (Richardson
& Spirtes, 2002; 1999; Zhang, 2007; 2008).

Proposition 3. The likelihood decomposition of ancestral
graphs (Eq. 12, Theorem 1) can be estimated by replac-
ing the model distribution q by the empirical distribution p
in the retained multivariate cross-information terms I(C)
corresponding to all ac-connected subsets of variables, C.

Hence, Proposition 3 amounts to estimating all relevant
cross-information terms in the likelihood function with the
corresponding multivariate information terms computed
from the available data, while assuming by construction
that the model distribution obeys all local and global condi-

1The genesis of Theorem 1 and Proposition 3 is fur-
ther discussed in https://openreview.net/forum?id=
Z2f4Laqi8U&noteId=8GLWeaAKc9.
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tional independences entailed by the ancestral graph. The
corresponding factorization of the model distribution can
be expressed in terms of empirical distribution, assuming
positive distributions, see Appendix C.

Fig. 1 illustrates the cross-entropy decomposition for a few
graphical models in terms of cross-information contribu-
tions from their ac-connected subsets of vertices. In par-
ticular, an unshielded non-collider (e.g. X → Z → W ,
Fig. 1A), is less likely (i.e. higher cross-entropy) than an
unshielded collider or ‘v-structure’ (e.g. X → Z ← W ,
Fig. 1B), if the corresponding three-point information term
is negative, I(X;Z;W ) < 0, in agreement with earlier
results (Affeldt & Isambert, 2015; Verny et al., 2017). How-
ever, this early approach, exploiting the sign and mag-
nitude of three-point information to orient v-structures,
does not include higher order terms involving multiple v-
structures, which can lead to orientation conflicts between
unshielded triples, in practice. Resolving such orientation
conflicts requires to include information contributions from
higher-order ac-connected subgraphs, such as star-like ac-
connected subsets including three or more parents, Fig. 1C.
Similarly, the cross-entropies of collider paths involving
several colliders also include higher-order terms, as with
the simple example of a two-collider path, Fig. 1D. By
contrast, the cross-entropy based on the head-and-tail fac-
torization of the same two-collider path, i.e. q(x, z, y, w) =
q(z, y|x,w)q(x)q(w) (Richardson, 2009), is found to be
equivalent to the cross-entropy of a Bayesian graph without
bidirected edge, Fig. 1E, when estimated with the empirical
distribution p(.), see Appendix C. This observation illus-
trates the difficulty to estimate the likelihood functions of
ancestral graphs using head-and-tail factorization.

Further examples of graphical models, Figs. 1F-I, show the
relative simplicity of the decomposition with only few (non-
trivial) ac-connected contributing subsets C with |C| > 3,
as compared to the much larger number of non-ac-connected
non-contributing subsets, that cancel each other by con-
struction due to conditional independence constraints of
the underlying model. Note, in particular, that most con-
tributing multivariate information I(C) only concern direct
connections or collider paths within a single component
subgraph induced by C (solid line edges in Fig. 1). How-
ever, occasionally, collider paths extending beyond C into
AnG(C) \C (marked with wiggly edges) with correspond-
ing ancestor path(s) (marked with dashed edges) do occur,
as shown in Fig. 1G.

In addition, the present information-theoretic decomposi-
tion of the likelihood of ancestral graphs can readily distin-
guish their Markov equivalence classes according to Corol-
lary 2. For instance, the ancestral graphs of Fig. 1F and
Fig. 1G, despite sharing the same edges and the same
unshielded collider (X → Z ← T ), turn out not to be

Markov equivalent, as discussed in (Ali et al., 2009). In-
deed, their cross-entropy decompositions differ by two ac-
connected contributing terms: a three-point cross informa-
tion I(X;Y ;T ) with a collider path not confined in C
(i.e.X  Z! T ←→ Y and corresponding ancestor path
Z 99K Y ) and a four-point information term I(X;Y ;Z;T )
due to the two-collider path (X → Z ←→ T ←→ Y ).
More quantitatively, it shows that the graph of Fig. 1G with
a two-collider path is more likely than the graph of Fig. 1F
whenever I(X;Y ;T )− I(X;Y ;Z;T ) = I(X;Y ;T |Z) =
I(X;Y |Z)− I(X;Y |Z, T )<0. Finally, the Markov equiv-
alent graphs of Fig. 1H and Fig. 1I, also due to (Ali et al.,
2009), illustrate the fact that the actual ancestor collider
path between unconnected pairs does not need to be unique
nor conserved between Markov equivalent graphs (as long
as their cross-entropies share the same multivariate cross-
information decomposition).

3. Efficient Search-and-Score Causal
Discovery using Local Information Scores

The likelihood estimation of ancestral graphs (Theorem 1
and Proposition 3) enables the implementation of a search-
and-score algorithm for this broad class of graphs, which has
attracted a number of contributions recently (Triantafillou
& Tsamardinos, 2016; Rantanen et al., 2021; Claassen &
Bucur, 2022; Andrews et al., 2022; Hu & Evans, 2024b;a).
Our specific objective is not to develop an exact method
limited to simple graphical models with a few nodes and
small datasets but to implement an efficient and reliable
heuristic method applicable to more challenging graphical
models and large datasets.

Indeed, search-and-score structure learning methods need
to rely on heuristic rather than exhaustive search, in gen-
eral, given that the number of ancestral graphs grows super-
exponentially as the number of vertices increases. This can
be implemented for instance with a Monte Carlo algorith-
mic scheme with random restarts, which efficiently probes
relevant graphical models. Here, we opt, instead, to use the
prediction of an efficient hybrid causal discovery method,
MIIC (Verny et al., 2017; Cabeli et al., 2021; Ribeiro-Dantas
et al., 2024), as starting point for a subsequent search-and-
score approach based on the proposed likelihood estimation
of ancestral graphs (Eq. 12 and Proposition 3).

Moreover, while the likelihood decomposition of ances-
tral graphs may involve extended ac-connected subsets of
variables, as illustrated in Fig. 1, we aim to implement a
computationally efficient search-and-score causal discov-
ery method based on approximate local scores limited to
the close surrounding vertices of each node and edge. Yet,
while MIIC only relies on unshielded triple scores, the novel
search-and-score extension, MIIC_search&score, uses also
higher-order local information scores to compare alternative
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Figure 1. Cross-entropy decomposition of ancestral graphs. Examples of cross-entropy decomposition of ancestral graphs (red edges,
lhs) in terms of relevant multivariate cross-information contributions I(C) with C ⊆ V (red nodes, rhs). Simple graphs: (A) without
unshielded colliders, (B) with a single or non-overlapping unshielded colliders, (C) with overlapping unshielded colliders through three
or more (conditionally) independent parents or (D) through a two-(or more)-collider path. (E) Bayesian graph corresponding to the
head-and-tail factorization of the two-collider path in (D) estimated using the empirical distribution p(.), see Appendix C. (F) Simple
Bayesian graph not Markov equivalent to an ancestral graph (G) sharing the same edges and unshielded collider (Ali et al., 2009). Solid
black edges correspond to direct connections or collider paths confined to the corresponding ac-connected subset C, while wiggly edges
indicate collider paths extending beyond C yet indirectly connected to C by an ancestor path, marked with dashed edges, see Definition 2.
By contrast, graphs H and I illustrate the fact that collider paths may not be unique nor conserved between two Markov equivalent graphs
(i.e. sharing the same cross-information terms) (Ali et al., 2009).

subgraphs, as detailed below.

The proposed method is shown to outperform MIIC and
other state-of-the-art causal discovery methods on challeng-
ing datasets including latent variables.

3.1. MIIC, an Hybrid Causal Discovery Method based
on Unshielded Triple Scores

MIIC is an hybrid causal discovery method combining
constraint-based and information-theoretic frameworks
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(Verny et al., 2017; Cabeli et al., 2020). Unlike traditional
constraint-based methods (Pearl, 2009; Spirtes et al., 2000),
MIIC does not directly attempt to uncover conditional inde-
pendences but, instead, iteratively substracts the most sig-
nificant three-point (conditional) information contributions
of successive contributors, A1, A2, ..., An, from the mutual
information between each pair of variables, I(X;Y ),

I(X;Y ) − I(X;Y ;A1)− I(X;Y ;A2|A1)− · · ·
· · · − I(X;Y ;An|{Ai}n−1) = I(X;Y |{Ai}n) (13)

where I(X;Y ;Ak|{Ai}k−1) > 0 is the positive informa-
tion contribution from Ak to I(X;Y ) (Affeldt & Isam-
bert, 2015; Affeldt et al., 2016). Conditional indepen-
dence is eventually established when the residual condi-
tional mutual information on the right hand side of Eq. 13,
I(X;Y |{Ai}n), becomes smaller than a complexity term,
i.e. kX;Y |{Ai}(N) > I(X;Y |{Ai}n) > 0, which depen-
dents on the considered variables and sample size N .

This leads to an undirected skeleton, which MIIC then (par-
tially) orients based on the sign and amplitude of the reg-
ularized conditional 3-point information terms (Affeldt &
Isambert, 2015; Verny et al., 2017). In particular, negative
conditional 3-point information terms, I(X;Y ;Z|{Ai})<0,
correspond to the signature of causality in observational
data (Affeldt & Isambert, 2015) and lead to the prediction of
a v-structure, X → Z ← Y , if X and Y are not connected
in the skeleton. By contrast, a positive conditional 3-point
information term, I(X;Y ;Z|{Ai})>0, implies the absence
of a v-structure and suggests to propagate the orientation of
a previously directed edge X → Z Y as X → Z → Y .

In practice, MIIC’s strategy to circumvent spurious condi-
tional independences significantly improves recall, that is,
the fraction of correctly recovered edges, compared to tradi-
tional constraint-based methods. Yet, MIIC only relies on
unshielded triple scores to reliably uncover significant con-
tributors and orient v-structures, as outlined above. MIIC
has been recently improved to ensure the consistency of the
separating set in terms of indirect paths in the final skeleton
or (partially) oriented graphs (Li et al., 2019; Ribeiro-Dantas
et al., 2024) and to improve the reliably of predicted orien-
tations (Cabeli et al., 2021; Ribeiro-Dantas et al., 2024).

The predictions of this recent version of MIIC, which in-
clude 3 types of edges (directed, bidirected and undirected),
have been used as starting point for the subsequent local
search-and-score method implemented in the present paper.

3.2. New Search-and-Score Method based on
Higher-Order Local Information Scores

Starting from the structure predicted by MIIC, as detailed
above, MIIC_search&score proceeds in two steps, first to
remove likely false positive edges (Step 1) and then to orient
the remaining edges based on their estimated contributions

to the global likelihood decomposition, Eq. 12 (Step 2). The
two steps are illustrated on a running example, Fig. D.1.

3.2.1. STEP 1: NODE SCORES FOR EDGE ORIENTATION
PRIMING AND EDGE REMOVAL

The first step consists in minimizing a node score corre-
sponding to the local normalized log likelihood of each
node w.r.t. its possible parents or spouses amongst the con-
nected nodes predicted by MIIC. To this end, the node score
assesses the conditional entropy of each node w.r.t. a se-
lection of parents, spouses or neighbors, Pa′

Xi
⊆ Pa

Xi
∪

Sp
Xi
∪Ne

Xi
, and a factorized Normalized Maximum Like-

lihood (fNML) regularization (Affeldt & Isambert, 2015)
(conditional entropies can be estimated as differences of
mutual information for continuous variables, Appendix D),

Scoren(Xi) = H(Xi|Pa′
Xi

) +
1

N

qxi∑
j

log Crxi
nj (14)

where qxi corresponds to the combination of levels of Pa′
Xi

,
while rxi

is the number of levels of Xi, and nj the number
of samples corresponding to a particular combination of
levels j in each summand, with

∑
j nj = N , the total

number of samples. log Crxi
nj is the fNML regulatization cost

summed over all combinations of levels, qxi
, (Kontkanen &

Myllymäki, 2007; Roos et al., 2008), see Appendix D.

This first algorithm is looped over each node, priming the
orientations of their surrounding edges (as directed, bidi-
rected or undirected), until convergence. Edges without
orientation priming at either extremity are assumed to be
false positive edges and removed at the end of Step 1.

3.2.2. STEP 2: EDGE ORIENTATION SCORES, AS LOCAL
CONTRIBUTIONS TO THE GLOBAL LIKELIHOOD

The second step consists in orienting the edges retained after
Step 1, based on the optimization of their local contribu-
tions to the global likelihood score, Eq. 12, restricted to
ac-connected subsets containing up to two-collider paths.
This amounts to minimizing each edge orientation score
w.r.t. its nodes’ parents and spouses, corresponding to minus
the conditional information plus a fNML complexity cost,
Table 1, given three sets of parents and spouses of X and
Y , i.e. Pa′

X\Y = Pa
X
∪Sp

X
\Y , Pa′

Y\X = Pa
Y
∪Sp

Y
\X

and Pa′
XY

= Pa′
X\Y ∪ Pa′

Y\X with their corresponding
combinations of levels, q

y\x , q
x\y and qxy . These orien-

tation scores, Table 1, include symmetrized fNML com-
plexity terms to enforce Markov equivalence, if X and Y
share the same parents or spouses (excluding X and Y ),
see Appendix D. Indeed, all three scores become equals if
Pa′

Y\X = Pa′
X\Y = Pa′

XY
implying also the same combi-

nations of parent and spouse levels, q
y\x = q

x\y = qxy .

While orientation scores cannot be summed over individual
edges due to multiple countings of ac-connected contri-
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Table 1. Local scores for the orientation of a single directed or bidirected edge, see Appendix D.

Edge Information Symmetrized fNML complexity (Markov equivalent)

X → Y −I(X;Y |Pa′
Y\X ) 1

2N

(∑q
x\yry

j log Crxnj
−
∑q

x\y
j log Crxnj

+
∑q

y\xrx

j log Crynj −
∑q

y\x
j log Crynj

)
X ← Y −I(X;Y |Pa′

X\Y ) 1
2N

(∑q
x\yry

j log Crxnj
−
∑q

x\y
j log Crxnj

+
∑q

y\xrx

j log Crynj −
∑q

y\x
j log Crynj

)
X ↔ Y −I(X;Y |Pa′

XY ) 1
2N

(∑qxy ry
j log Crxnj

−
∑qxy

j log Crxnj
+
∑qyxrx

j log Crynj −
∑qyx

j log Crynj

)

butions, score differences between alternative orientations
provide an estimate of the global score change. Hence,
step 2 algorithm is looped over each edge to compute an
orientation score decrement, given its current orientation
and the orientations of surrounding edges. The orientation
change corresponding to the largest global score decrement,
without forming new directed or almost directed cycles, is
then chosen at each iteration until convergence or until a
limit cycle is reached. Limit cycles may originate from the
local two-collider approximation of the global score.

4. Experimental Results
We first tested whether MIIC_search&score orientation
scores (Table 1) effectively predicts bidirected orientations
on three simple ancestral models, Fig. E.1 in Appendix E,
when the end nodes do not share the same parents (Fig. E.1,
Model 1), share some parents (Fig. E.1, Model 2) or when
the bidirected edge is part of a longer than two-collider
paths (Fig. E.1, Model 3). The prediction of the edge orien-
tation scores are summarized in Table E.1 and show good
predictions for large enough datasets.

We then tested MIIC_search&score performance on ances-
tral graphs obtained by hiding up to 20% of variables in
either linear or non-linear continuous Bayesian networks
of 50-150 nodes and average degree 3-5. Figs. 2 & E.2
compare MIIC_search&score performance to MIIC results
used as starting point for MIIC_search&score and to M3HC
(Triantafillou & Tsamardinos, 2016), GFCI (Ogarrio et al.,
2016) and DAG-GNN (Yu et al., 2019), a DL method based
on continuous constrained optimization. The parameter
settings for each method are detailed in Appendix E.

While MIIC_search&score is outperformed on linear
Gaussian models by causal discovery methods assum-
ing linear combinations of the variables (with possible
pre- or post-nonlinear transformations for DAG-GNN),
MIIC_search&score clearly outperforms these methods on
more complex models including non-linear couplings be-
tween variables, Figs. 2 & E.2. MIIC_search&score also
outperforms MIIC in terms of edge precision with little
to no decrease in edge recall, demonstrating the benefit
of MIIC_search&score’s rationale to improve MIIC predic-
tions by extending MIIC information scores from unshielded
triples to higher-order information contributions.
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Figure 2. Benchmark results on continuous datasets. Bench-
mark results are averaged over 30 independent ancestral graph
models obtained by hiding 0%, 10% or 20% of variables in linear
Gaussian models (left) or in more complex models with non-linear
couplings between variables (right), and including 50 nodes of av-
erage degree 5. MIIC_search&score results are compared to MIIC
results used as starting point for MIIC_search&score, M3HC (Tri-
antafillou & Tsamardinos, 2016), GFCI (Ogarrio et al., 2016) and
DAG-GNN (Yu et al., 2019). See also Fig. E.2. Causal discovery
performance is assessed in terms of Precision and Recall relative to
the theoretical PAGs, while counting as false positive all correctly
predicted edges but with a different orientation as the directed or
bidirected edges of the PAG. Error bars: 95% confidence interval.

We also analyzed challenging benchmarks for categorical
datasets from the bnlearn repository (Scutari, 2010). They
concern ancestral graphs obtained by hiding up to 20% of
variables in Discrete Bayesian Networks of increasing com-
plexity (number of nodes and parameters), such as Alarm
(37 nodes, 509 parameters), Insurance (27 nodes, 1,008 pa-
rameters), Barley (48 nodes, 84 links, 114,005 parameters),
and Mildew (35 nodes, 540,150 parameters), Figs. 3 & E.3.
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Figure 3. Benchmark results on ‘real-world’ categorical datasets from the bnlearn repository. Benchmark results are averaged over
50 independent categorical datasets from ancestral graphs obtained by hiding 0%, 10% or 20% of variables in Discrete Bayesian Networks
of increasing complexity (see main text): Alarm, Insurance, Barley and Mildew. MIIC_search&score results are compared, as in Fig. 2, to
MIIC results used as starting point for MIIC_search&score and to FCI (Zheng et al., 2024). Error bars: 95% confidence interval.

Figs. 3 & E.3 compare MIIC_search&score performance
to MIIC results and to FCI from the python causal-learn
package (Zheng et al., 2024). The parameter settings for
each method are detailed in Appendix E. Fig. 3 results
are obtained from independent datasets for each ancestral
graph and sample size, while Fig. E.3 results provide a
bootstrap sensitivity analysis to sampling noise for each
method based on independent resamplings with replacement
of single datasets of increasing size.

As with continuous data, MIIC_search&score outperforms
MIIC in terms of edge precision with little to no decrease in
edge recall, Figs. 3 & E.3. MIIC_search&score is also found
to outperform FCI on both precision and recall on small
datasets (e.g. N 6 10, 000 samples) of complex graphical
models (i.e. Barley and Mildew), while reaching similar
performance at larger sample sizes or for simpler graphical
models (i.e. similar precision on Alarm and Insurance), as
expected from the asymptotic consistency of FCI for very
large datasets, Fig. 3. We also observed that FCI had a hard
time to converge on bootstrapped datasets, explaining the
lack of FCI comparison with MIIC and MIIC_search&score
in Fig. E.3 for complex models at large sample sizes.

Hence, MIIC_search&score is shown to outperform all other
tested causal discovery methods on complex non-Gaussian
datasets including non-linear couplings between variables,
while GFCI and DAG-GNN are the best performers on lin-
ear Gaussian datasets. These results demonstrate GFCI,
M3HC and DAG-GNN’s clear advantage in assuming intrin-
sically linear combinations of the variables, when analyz-
ing multivariate Gaussian datasets. However, these results
also highlight the clear limitation of this assumption, when
analyzing more complex datasets including non-linear cou-
plings between variables, which goes beyond the variable
transformation of pre- or post-nonlinear causal models. By
contrast, MIIC_search&score and MIIC make no particular
assumption on the data distributions and achieve similar
good performance across a broad range of Gaussian or non-
Gaussian multimodal distributions Figs. 2 & E.2 as well as
on complex real-world categorical datasets Figs. 3 & E.3.

Importantly, the benchmark PAGs used to score the causal
discovery methods with increasing proportions of latent vari-
ables (Figs. 2 & 3 and Figs. E.2 & E.3) include not only
bidirected edges originating from hidden common causes
but also additional directed or undirected edges arising, in
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particular, from indirect effects of hidden variables with
observed parents. Irrespective of their orientations, all these
additional edges originating from indirect effects of hidden
variables generally correspond to weaker effects (i.e. lower
mutual information of indirect effects due to the Data Pro-
cessing Inequality) and are more difficult to uncover than
the edges of the original DAG model without hidden vari-
ables. This explains the steady decrease in recall for com-
plex ancestral models with higher proportions of hidden
variables, while precision remains essentially unaffected.
This is clearly apparent for complex random models with
average degree 5 (Figs. 2 & E.2) and for complex real-world
models, Insurance, Barley and Mildew (Figs. 3 & E.3).

MIIC_search&score scalability is primarily limited by the
quadratic complexity of MIIC w.r.t. the number of nodes,
with only a small time increase when including latent vari-
ables thanks to MIIC’s greedy approach, see Fig. S5 in
(Verny et al., 2017). By contrast, the two-step search-and-
score scheme of MIIC_search&score is essentially linear
in the numbers of nodes (step 1) and edges (step 2) for
a fixed degree. In practice, Steps 1 and 2 take similar
running time as for MIIC to provide a starting graph for
MIIC_search&score. Hence, MIIC_search&score’s scalabil-
ity remains competitive against recent differential causal dis-
covery methods using continuous optimization techniques,
whose complexity is generally cubic in the number of vari-
ables, although more scalable methods have recently been
developped, e.g. (Lopez et al., 2022; Montagna et al., 2023;
Amin & Wilson, 2024).

All in all, these results highlight MIIC_search&score ca-
pacity to efficiently and robustly learn complex graphi-
cal models from limited available data, which is a fre-
quent setting for many real-world applications. In addition,
MIIC_search&score, which has been implemented to ana-
lyze challenging categorical or complex continuous datasets
including non-linear couplings between variables, is quite
unique in this regard, as all other search-and-score methods
for ancestral graphs (Triantafillou & Tsamardinos, 2016;
Rantanen et al., 2021; Claassen & Bucur, 2022; Andrews
et al., 2022; Hu & Evans, 2024a) have only been demon-
strated on continuous datasets from linear Gaussian models.

5. Limitations
The main limitation of the paper concerns the local scores
used in the search-and-score algorithm, which are limited
to ac-connected subsets of vertices with a maximum of
two-collider paths.

While this approach could be extended to higher-order infor-
mation contributions including three-or-more-collider paths,
it allows for a simple two-step search-and-score scheme at
the level of individual nodes (step 1) and edges (step 2), as

detailed in section 3. This already shows a significant im-
provement in causal discovery performance (i.e. combining
good precision and good recall on challenging benchmarks)
as compared to existing state-of-the-art methods.

In addition, for ancestral graphs including only ac-
connected subsets with a maximum of two-collider paths,
the local consistency of the likelihood score (Eq. 12) guar-
antees that the two-step algorithm gives a correct estimate
of the global likelihood, based on Proposition 3, just like
with the likelihood decomposition of Bayesian networks
(Eq. 2). Besides, for more complex ancestral graphs includ-
ing longer collider paths, an oracle version of the approach
could also be proposed, as the general likelihood decom-
position (Eq. 12) could in principle be used in conjunction
with an exhaustive search-and-score algorithm over MAGs
or PAGs, which can be generated rather efficiently (Hu &
Evans, 2020). Alternatively, and in practice for graphs with
more than about 10-15 nodes, an MCMC algorithm based
on the likelihood decomposition (Eq. 12) could be used to
efficiently search for high-scoring MAGs or PAGs.

Finally, another limitation of the proposed likelihood de-
composition (Eq. 12) is its restriction to MAGs without
undirected edge, as shown in the proof of Theorem 1, Ap-
pendix B section (iii). However, it would be interesting to
see how this result could be extended to MAGs including
undirected edges. In addition, there are other existing scores
under latent variables for specific parametric assumptions
like discrete variables, exponential or stratified Gaussian
families. In particular, discrete chain graph models (Drton,
2009), fully bidirected graph models (Drton & Richard-
son, 2008), and discrete nested Markov models (Richardson
et al., 2023) have been shown to be curved exponential
models, which can be scored consistently using BIC scores.
One extension of these BIC scores has also been recently
proposed (Bellot et al., 2024) to allow for the distinction
between different acyclic directed mixed graphs (ADMG)
from (Verma & Pearl, 1990), see Fig. 1c & d in (Bellot et al.,
2024). These ADMGs imply the same set of conditional in-
dependence constraints and yet are distinguishable because
they imply an equality between different functionals of the
probability distribution (see Eq. 1 in (Bellot et al., 2024)). It
would be interesting to further explore the relation of these
other existing scores under latent variables with the present
information theoretical score (Eq. 12).
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Appendices

A. Preliminaries: connection and separation criteria
A.1. m-connection vs m’-connection criteria

An ancestral graph can be interpreted as encoding a set of conditional indepencence relations by a graphical criterion,
called m-separation, based on the concept of m-connecting paths, which generalizes the separation criteria of Markov and
Bayesian networks to ancestral graphs.

Definition 4. [m-connecting path] A path π between X and Y is m-connecting given a (possibly empty) subset C ⊆ V
(with X,Y /∈ C) if:

i) its non-collider(s) are not in C, and
ii) its collider(s) are in AnG(C).

Definition 5. [m-separation criterion] The subsetsA andB are said to be m-separated by C, notedA⊥mB|C, if there is
no m-connecting path between any vertex inA and any vertex inB given C.

The probabilistic interpretation of ancestral graph is given by its global and pairwise Markov properties (which are equivalent
(Richardson & Spirtes, 2002)): ifA andB are m-separated by C, thenA andB are conditionally independent given C
and ∀X ∈ A and ∀Y ∈ B, there is a probability distribution P faithful to G such that their conditional mutual information
vanishes, i.e. IP (X;Y |C) = 0, also noted X ⊥⊥P Y |C.

However, as discussed above, the proof of Theorem 1 will require to introduce a weaker m′-connection criterion defined
below.

Definition 6. [m′-connecting path] A path π between X and Y is m′-connecting given a subset C ⊆ V (with X,Y
possibly in C) if:

i) its non-collider(s) are not in C, and
ii) its collider(s) are in AnG({X,Y } ∪C).

Note, in particular, that an m-connecting path is necessary an m′-connecting path but that the converse is not always
true. For example, the path X→Z←→T←→Y in Fig. 1G (with Z → Y ) is an m′-connecting path given T (as
Z ∈ AnG({X,Y } ∪ T )) but not an m-connecting path given T (as Z /∈ AnG(T )).

However, Richardson and Spirtes 2002 have shown the following lemma,

Lemma 4. [Corollary 3.15 in (Richardson & Spirtes, 2002)] In an ancestral graph G, there is a m′-connecting path µ
between X and Y given C if and only if there is a (possibly different) m-connecting path π between X and Y given C.

Hence, Lemma 4 implies that m′-separation and m-separation criteria are in fact equivalent, as an absence of m′-connecting
paths implies an absence of m-connecting paths and vice versa. This enables to reformulate the m-separation criterion
above as,

Definition 7. [m′-separation (and m-separation) criteria] The subsetsA andB are said to be m′-separated (or m-separated)
by C, if all paths from any X ∈ A to any Y ∈ B have either

i) a non-collider in C, or
ii) a collider not in AnG({X,Y } ∪C).

The probabilistic interpretation of an ancestral graph is given by its (global) Markov property: ifA andB are m-separated
(or m′-separated) by C, thenA andB are conditionally independent given C, noted as,A ⊥m B|C.

A.2. ac-connecting paths and ac-connected subsets

Let us now recall the definition of ancestor collider connecting paths or ac-connecting paths, which is directly relevant
to characterize the likelihood decomposition and Markov equivalent classes of ancestral graphs (Theorem 1). We give here a
different yet equivalent definition of ac-connecting paths as defined in the main text (Definition 2) in order to underline the
similarities and differencies with the notion of m′-connecting path (Definition 6).

Definition 8. [ac-connecting path] A path π between X and Y is an ac-connecting path given a subset C ⊆ V (with X
and Y possibly in C) if:
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i) π does not have any noncollider, and
ii) its collider(s) are in AnG({X,Y } ∪C).

Hence, more simply (following Definition 2 in the main text), an ac-connecting path given C is a collider path, X ∗→
Z1 ↔ · · · ↔ ZK ←∗Y , with all Zi ∈ AnG({X,Y } ∪C), i.e. with Zi in C or connected to {X,Y } ∪C by an ancestor
path, Zi → · · · → T with T ∈ {X,Y } ∪C.

Definition 9. [ac-separation criterion] The subsetsA andB are said to be ac-separated by C if there is no ac-connecting
path between any vertex inA and any vertex inB given C.

Previous definitions and Lemma 4 readily lead to the following corollary between the different connection and separation
criteria:

Corollary 5.
i) m-connecting path π =⇒ m′-connecting path π
ii) ac-connecting path π =⇒ m′-connecting path π
iii) m-separation ⇐⇒ m′-separation
iv) m/m′-separation =⇒ ac-separation

Finally, we recall the notion of ac-connected subset (Definition 3 in the main text), which is central for the decomposition
of the likelihood of ancestral graphs (Theorem 1): A subset C is said to be ac-connected if ∀X,Y ∈ C, there is an
ac-connecting path between X and Y w.r.t. C.

B. Proof of Theorem 1.
In order to prove that the likelihood function of an ancestral graph, Eq. 12, contains all and only the ac-connected subsets
of vertices in G (Definition 3), we will first show (i) that all non-ac-connected subsets S′ are included in a cancelling
combination of multivariate cross-information terms, I(X;Y |A) = 0, with X,Y ∈ S′ and S′ ⊆ S = {X,Y } ∪A, Eq. 11.
Conversely, we will then show (ii) that cancelling combinations of multivariate cross-information terms associated to pairwise
conditional independence, I(X;Y |A) =

∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0, do not contain any ac-connected subset S′. Finally,

we will prove (iii) that the information terms which appear in multiple cancelling combinations from different pairwise
independence constraints do not modify the multivariate information decomposition of the likelihood function of ancestral
graphs, Eq. 12, as these shared/overlapping terms in fact all cancel through more global Markov independence relationships
involving higher order (three or more points) vanishing multivariate information terms, such as I(X;Y ;Z|A) = 0.

i) Let’s first prove that all non-ac-connected subsets S′ are included in at least one cancelling combination of multivariate
cross-information, I(X;Y |A) = 0, with X,Y ∈S′ and S′⊆{X,Y} ∪A.

If S′ is a non-ac-connected subset, there is at least one disconnected pair X and Y for which each path πj between
X and Y contains either some collider(s) not in AnG(S′) or, if all colliders along πj are in AnG(S′), there must be
some non-collider(s) at node(s) Zj but not necessarily in S′. Let’s define S = S′ ∪j Zj . X and Y can be shown to be
m-separated given S \ {X,Y }, as for each path πj between X and Y , its non-collider(s) are in S at node(s) Zj (when all
collider(s) along πj are in S′) or there is some collider(s) not in AnG(S′), which are not in AnG(S) either. The latter
statement is proven by contradiction assuming that there is a collider at Z /∈ AnG(S′) such that Z ∈ AnG(S). There
is therefore a directed path Z → · · · → W with W ∈ S. Hence, W ∈ S′ or there is a noncollider at W ∈ Zj which is
on a path πj between X and Y along which all colliders are in AnG(S′) by construction of S. This leads by induction
to Z → · · · → W → · · · → T where T ∈ S′ and thus Z ∈ AnG(S′), which is a contradiction. Hence, all non-ac-
connected subsets S′ are included in a cancelling combination of multivariate cross-information terms, I(X;Y |A) = 0,
with X,Y ∈ S′ and S′ ⊆ S = {X,Y } ∪A.

ii) Conversely, we will now show that cancelling combinations of multivariate cross-information terms associated to pairwise
conditional independence, I(X;Y |A) =

∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0, do not contain any ac-connected subset S′, where

S = {X,Y } ∪A.

We will prove it by contradiction assuming that there exists a subset W ⊆ A, such that S′ = {X,Y } ∪W is ac-
connected. In particular, there should be an ac-connecting path between X and Y confined to AnG(S′) and thus to
AnG(S) ⊇ AnG(S′), which is an m′-connecting path between X and Y given A, contradicting the above hypothesis
of m′-separation given A, i.e. I(X;Y |A) = 0. The use of m′-separation, i.e. the absence of m′-connecting paths with

14



An Efficient Search-and-Score Algorithm for Ancestral Graphs using Multivariate Information Scores

colliders in AnG(S) rather than m-connecting paths with colliders in AnG(A), is necessary here, see Definitions 4 and 6.
Hence, no ac-connected subset S′ is included in cancelling combinations of multivariate cross-information terms associated
to pairwise conditional independence, I(X;Y |A) =

∑X,Y ∈S′

S′⊆S (−1)|S
′|I(S′) = 0.

iii) Finally, we will show that the information terms which appear in multiple cancelling combinations from different
pairwise independence constraints do not modify the multivariate cross-information decomposition of the likelihood
function of ancestral graphs, Eq. 12, as these shared/overlapping terms in fact all cancel through more global Markov
independence relationships involving higher order (three or more points) vanishing multivariate cross-information terms,
such as I(X;Y ;Z|A) = 0.

This result requires to use an ordering of the nodes, Xk � Xj � Xi, that is compatible with the directed edges of
the ancestral graph assumed to have no undirected edges, i.e. Xj /∈ An(Xi) if Xj � Xi. Under this ordering, higher
order nodes Xk � Xj � Xi can be a priori excluded from all separating sets Aij of pairs of lower order nodes, i.e. if
I(Xi;Xj |Aij) = 0 then Xk /∈ Aij .

In particular, the two pairwise conditional independence relations I(Xk;X`|Ak`) = 0, with X` � Xk, and
I(Xi;Xj |Aij) = 0, with Xj � Xi, do not share any multivariate cross-information terms, if X` 6= Xj . Indeed, as
I(Xi;Xj |Aij) contains all cross-information terms including both Xi and Xj as well as every subset (possibly empty)
ofAij , none of them includes X` if X` � Xj . Therefore I(Xi;Xj |Aij) does not contain any cross-information term of
I(Xk;X`|Ak`) which contains both Xk and X` as well as every subset (possibly empty) ofAk`. This property eliminates
all multiple countings of multivariate cross-information terms if X` 6= Xj . Note that this result does not hold in general for
ancestral graphs including undirected edges.

Hence, the issue of redundant multivariate cross-information terms in the likelihood decomposition, Eq. 12, is related to the
conditional independences of two or more pairs, {Xi, Xr}, {Xj , Xr}, ..., {X`, Xr}, sharing the same higher order node,
Xr, i.e., I(Xk;Xr|Akr) = 0 for k = i, j, · · · , `. However, this situation also entails a more global Markov independence
constraint between Xr and {Xi, Xj , · · · , X`}, given a separating setA, withAkr ⊆ A∪{Xi, · · · , X`} for k = i, j, · · · , `.
Such a global Markov independence constraint can be decomposed into more local independence constraints using the chain
rule (in any order of the variables Xi, Xj , · · · , X`) and the decomposition rules of multivariate (cross) information (Eq. 9),

0 = I({Xi, Xj , · · · , X`};Xr|A)

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A, Xi)

)
+
[
I(Xk;Xr|A, Xi, Xj)

]
+ · · ·+ I(X`;Xr|A, · · · )

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A)− I(Xi;Xj ;Xr|A)

)
+
[
I(Xk;Xr|A, Xi)− I(Xj ;Xk;Xr|A, Xi)

]
+ · · ·+ I(X`;Xr|A, · · · )

=
(
I(Xi;Xr|A) + I(Xj ;Xr|A)− I(Xi;Xj ;Xr|A)

)
+
[
I(Xk;Xr|A)− I(Xj ;Xk;Xr|A)− I(Xi;Xk;Xr|A) + I(Xi;Xj ;Xk;Xr|A)

]
+ · · ·

where all the conditional multivariate cross-information terms vanish by induction due to the non-negativity of (conditional)
mutual (cross) information. In particular, the conditional multivariate cross-information terms in the last expression,
i.e. between Xr and each subset of {Xi, Xj , · · · , X`} given the separating set A, all vanish. This result can be readily
extended to any subsets {Xr, Xs, · · · , Xz} (conditionally) independent of {Xi, Xj , · · · , X`} given a separating set A,
i.e. I({Xi, Xj , · · · , X`}; {Xr, Xs, · · · , Xz}|A) = 0. Hence, as the final conditional multivariate cross-information terms
of the decomposition all vanish while not sharing any subsets of variables, it proves the absence of redundancy and a
global cancellation of non-ac-connected subsets (from pairwise and higher order conditional independence relations) in the
likelihood function of ancestral graphs without undirected edges, Eq. 12.

Hence, only ac-connected subsets effectively contribute to the cross-entropy of an ancestral graph with only directed and
bidirected edges, Eq. 12. �
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C. Factorization of the probability distribution of ancestral graphs
C.1. Factorization resulting from Theorem 1 and Proposition 3

Before presenting the factorization of the model distribution of ancestral graphs resulting from Theorem 1 and Proposition 3,
it is instructive to obtain an equivalent factorization for Bayesian graphs, assuming a positive empirical distributions,
p(x1, · · · , xm) =

∏m
i=1 p(xi|xi−1, · · · , x1) > 0,

q(x1, · · · , xm) =

m∏
i=1

q(xi|paxi
) =

m∏
i=1

p(xi|paxi
)

= p(x1, · · · , xm)

m∏
i=1

p(xi|paxi
)

p(xi|xi−1, · · · , x1)

= p(x1, · · · , xm)

m∏
i=1

p(xi|paxi
)p(xi−1\paxi

|paxi
)

p(xi,xi−1\paxi
|paxi

)
(15)

This leads to the following alternative expressions for the cross-entropy H(p, q) = −
∑

x p(x) log q(x) in terms of
multivariate entropy and information, which only depend on the empirical joint distribution p(x),

H(p, q) =

m∑
i=1

H(xi|PaXi
)

= H(X1, · · · , Xm) +

m∑
i=1

I(Xi;Xi−1\PaXi
|PaXi

) (16)

where
∑m
i=1 I(Xi;Xi−1\PaXi

|PaXi
) can be decomposed, using the chain rule and Eq. 11, into unconditional multivariate

information terms, which exactly cancel all the multivariate information of the non-ac-connected subsets of variables in the
multivariate entropy decomposition, Eq. 6.

Note, however, that this result obtained for Bayesian networks requires an explicit factorization of the global model
distribution, q(x), in terms of the empirical distribution, p(x), which is not known and presumably does not exist, in general,
for ancestral graphs.

Alternatively, assuming that the empirical and model distributions are positive (∀x, p(x) > 0, q(x) > 0), it is always
possible to factorize them into factors associated to each (cross) information term in the (cross) entropy decomposition,
Eq. 6, as,

q(x) =

m∏
i=1

q(xi)×
m∏
i<j

q(xi, xj)

q(xi)q(xj)
×

m∏
i<j<k

q(xi, xj , xk)q(xi)q(xj)q(xk)

q(xi, xj)q(xi, xk)q(xj , xk)
× · · · (17)

where all the marginal distributions over a subset of variables, e.g. q(xi, xj , xk) =
∑
` 6=i,j,k q(x) or p(xi, xj , xk) =∑

` 6=i,j,k p(x), cancel two-by-two by construction.

This can be illustrated on a simple example of a two-collider path including one bidirected edge, X → Z ←→ Y ← W
(Fig. 1D), valid for q(.) and p(.) alike,

q(x, z, y, w) = q(x) q(z) q(y) q(w)

× q(x, z)

q(x) q(z)

q(z, y)

q(z) q(y)

q(y, w)

q(y) q(w)

q(x, y)

q(x) q(y)

q(x,w)

q(x) q(w)

q(z, w)

q(z) q(w)

× q(x) q(z) q(y) q(x, z, y)

q(x, z) q(x, y) q(z, y)

q(z) q(y) q(w) q(z, y, w)

q(z, y) q(z, w) q(y, w)

× q(x) q(z) q(w) q(x, z, w)

q(x, z) q(x,w) q(z, w)

q(x) q(y) q(w) q(x, y, w)

q(x, y) q(x,w) q(y, w)

× q(x, z) q(z, y) q(y, w) q(x, y) q(x,w) q(z, w) q(x, z, y, w)

q(x, z, y) q(x, z, w) q(x, y, w) q(z, y, w) q(x) q(y) q(z) q(w)
(18)
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where all individual distribution marginals on subsets of variables, e.g. q(x), q(x, z), q(x, z, y) (or p(x), p(x, z), p(x, z, y)),
cancel two-by-two by construction, except q(x, z, y, w) (or p(x, z, y, w)).

In addition and only for the model distribution q(.), all ratios in gray in Eq. 18 also cancel due to Markov independence
relations across non-ac-connected subsets (see proof of Theorem 1). This leaves a truncated factorization retaining all and
only the ac-connected subsets of variables in the graph, which we propose to estimate on empirical data by substituting the
remaining q(.) terms by their empirical counterparts p(.), see Proposition 3.

This leads to the following global factorization for q(.) in terms of p(.),

q(x, z, y, w) ≡ p(x) p(z) p(y) p(w)
p(x, z)

p(x) p(z)

p(z, y)

p(z) p(y)

p(y, w)

p(y) p(w)

× p(x) p(z) p(y) p(x, z, y)

p(x, z) p(x, y) p(z, y)

p(z) p(y) p(w) p(z, y, w)

p(z, y) p(z, w) p(y, w)

× p(x, z) p(z, y) p(y, w) p(x, y) p(x,w) p(z, w) p(x, z, y, w)

p(x, z, y) p(x, z, w) p(x, y, w) p(z, y, w) p(x) p(y) p(z) p(w)

= p(x, z, y, w)
p(x) p(y)

p(x, y)

p(x) p(w)

p(x,w)

p(z) p(w)

p(z, w)

× p(x, z) p(x,w) p(z, w)

p(x) p(z) p(w) p(x, z, w)

p(x, y) p(x,w) p(y, w)

p(x) p(y) p(w) p(x, y, w)
(19)

where the terms in gray have been passed to the lhs of Eq. 18 applied to p(.). This ultimately leads to the analog of the
Bayesian Network factorization in Eq. 15 but for the two-collider path, X → Z ←→ Y ←W (Fig. 1D),

q(x, z, y, w) ≡ p(x, z, y, w)
p(x) p(w)

p(x,w)

p(z|x) p(w|x)

p(z, w|x)

p(x|w) p(y|w)

p(x, y|w)
(20)

where the last three factors “correct” the expression of p(x, z, y, w) for the three (conditional) independences entailed by the
underlying graph, that is, X ⊥W , Z ⊥W |X , and X ⊥ Y |W .

C.2. Relation to the head-and-tail factorizations

The head-and-tail factorizations of the model distribution of an acyclic directed mixed graph, introduced by Richardson 2009,
do not correspond to a single factorized equation (as with Bayesian graphs, Eq. 15) but to multiple factorized equations,
which enable the parametrization of the joint probability distribution with independent parameters for ancestrally closed
subsets of vertices.

For instance, the head-and-tail factorizations of the simple two-collider path including one bidirected edge, X → Z ←→
Y ←W , introduced above, Fig. 1D, correspond to the following equations (Richardson, 2009),

q(x,w) = q(x) q(w)

q(x, z) = q(z|x) q(x)

q(y, w) = q(y|w) q(w)

q(x, z, w) = q(z|x) q(x) q(w)

q(x, y, w) = q(y|w) q(w) q(x)

q(x, z, y, w) = q(z, y|x,w) q(x) q(w) (21)

Importantly, these head-and-tail factorizations imply additional relations such as q(y|w) = q(y|x,w) (i.e. X ⊥ Y |W )
obtained by comparing the last two relations in Eqs. 21 after marginalizing q(x, z, y, w) over z. However, such implicit
conditional independence relations are not verified by the empirical distribution p(.) in general and prevent the estimation of
the head-and-tail factorizations by substituting the rhs q(.) terms in Eqs. 21 with their empirical counterparts p(.), as in the
case of Bayesian networks, Eq. 15.

Indeed, while the head-and-tail factorization relations, Eqs. 21, obey the local and global Markov independence relations
entailed by the graphical model, Fig. 1D, leading to the cancellation of all factors associated to non-ac-connected subsets in
gray in Eq. 18, the remaining head-and-tail factors cannot be readily estimated with the empirical distribution p(.).
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In particular, the cross-entropy of the two-collider path of interest, Fig. 1D, obtained with the head-and-tail factorizations
corresponds to2 H(p, q) = −

∑
p(x, z, y, w) log q(z, y|x,w) q(x) q(w). Then, estimating the q(.) terms with their p(.)

counterparts leads to the cross-entropy of a Bayesian graph, Fig. 1E, with a different Markov equivalent class than the
ancestral graph of interest, Fig. 1D. A similar discrepancy is obtained with a c-component factorization which leads to the
cross-entropy of the Bayesian graph of Fig. 1E without edge X → Y , corresponding to a different Markov equivalence
class than the previous two graphs, Figs. 1D & E.

These examples illustrate the difficulty to exploit the c-component or head-and-tail factorizations to estimate the likelihood
of ancestral graphs including bidirected edge(s).

D. Node and edge scores based on Normalized Maximum Likelihood criteria
MIIC_search&score’s two-step implementation is illustrated with a running example on Fig. D.1. It relies on Node scores
(Step 1), for edge orientation priming and edge removal, and on Edge orientation scores (Step 2). Both scores are based on
Normalized Maximum Likelihood criteria, derived in this Appendix.

X Y

Z W

T

V

(i) Output from MIIC

X Y

Z W

T

V

(ii) Step 1: Edge orientation priming and Edge removal

X Y

Z W

T

V

X Y

Z W

T

V

(iii) Step 2: Edge orientation

Figure D.1. A simple running example of MIIC_search&score’s two-step implementation. (i) The graph obtained by MIIC is used
as starting point for MIIC_search&score two-step algorithm. (ii) Step 1 (Node scores): Edge orientation primings (∗) are obtained
from the minimization of the node scores Eqs. 14 & 34. Edges without priming at either extremity are removed at the end of Step 1
(e.g. X−−Z). (iii) Step 2 (Edge orientation scores) : Edge orientations for directed or bidirected edges are obtained by optimizing their
local contributions (Table 1) to the global likelihood score (Eq. 12) restricted to ac-connected subsets containing up to two-collider
paths. This amounts to minimizing each edge orientation score w.r.t. its nodes’ parents and spouses (Table 1). The orientations of
the edges highlighted in red have been modified with respect to their orientations in the MIIC network (i) used as starting point for
MIIC_search&score.

Search-and-score methods based on likelihood estimates need to properly account for finite sample size, as cross-entropy
minimization leads to ever more complex models, resulting in model overfitting for finite datasets. BIC regularization is
valid in the asymptotic limit of very large datasets and leads to the following finite size corrections of the cross-information
terms in the likelihood decomposition Eq. 12,

I(C)→ I ′(C) = I(C)− 1

2

|C|∏
k=1

(1− rk)
logN

N
(22)

for categorical datasets, where rk is the number of categories or levels of the kth variable of C.

However, BIC regularization tends to overestimate finite size corrections, leading to lower recall, in general. In order
to better take into account finite sample size, we used instead the (universal) Normalized Maximum Likelihood (NML)
criterion (Shtarkov, 1987; Rissanen & Tabus, 2005; Kontkanen & Myllymäki, 2007; Roos et al., 2008), which amounts to
normalizing the likelihood function over all possible datasets with the same number N of samples.

2Indeed, all terms in Eq. 18 actually cancel two-by-two by construction, whatever their factorized expression, except for the remaining
joint-distribution over all variables, q(x, z, y, w)=q(z, y|x,w) q(x) q(w).
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Moreover, as search-and-score structure learning methods need to rely on heuristic rather than exhaustive search, we have
implemented a computationally efficient search-and-score method based on the likelihood decomposition of ancestral graphs
(Eq. 12) limited to the close surrounding vertices of each node and edge. These node and edge scores, detailed below, extend
MIIC’s unshielded triple scores to higher-order local information scores including ac-connected subsets of vertices with a
maximum of two-collider paths.

Node score. We first used the factorized Normalized Maximum Likelihood (fNML) complexity (Kontkanen & Myllymäki,
2007; Roos et al., 2008) to define a local score for each node Xi, which extends the decomposable likelihood of Bayesian
graphs given each node’s parents, Eq. 2, to all non-descendant neighbors, Pa′

Xi
,

LD|GXi
= e−N. Scoren(Xi) =

e
−NH(Xi|Pa′

Xi
)∑

|D′|=N e
−NH(Xi|Pa′

Xi
)

(23)

= e
−NH(Xi|Pa′

Xi
)−
∑qi

j log Crinj (24)

= e
N
∑qi

j

∑ri
k

njk
N log

(
njk
nj

)
−
∑qi

j log Crinj (25)

=

qi∏
j

∏ri
k

(
njk

nj

)njk

Crinj

(26)

where njk corresponds to the number of data points for which Xi is in its kth state and its non-descendant neighbors in their
jth state, with nj =

∑ri
k njk. The universal normalization constant Crn is then computed by summing the numerator over

all possible partitions of the n data points into a maximum of r subsets, `1 + `2 + · · ·+ `r = n with `k > 0,

Crn =
∑

`1+`2+···+`r=n

n!

`1!`2! · · · `r!

r∏
k=1

(
`k
n

)`k
(27)

which can in fact be computed in linear-time using the following recursion (Kontkanen & Myllymäki, 2007),

Crn = Cr−1n +
n

r − 2
Cr−2n (28)

with C1n = 1 for all n and applying Eq. 31 below for r = 2. However, for large n and r, Crn computation tends to
be numerically unstable, which can be circumvented by implementing the recursion on parametric complexity ratios
Drn = Crn/Cr−1n rather than parametric complexities themselves (Cabeli et al., 2020) as,

Drn = 1 +
n

(r − 2)Dr−1n

(29)

log Crn =

r∑
k=2

logDkn (30)

for r > 3, with C1n = 1 and C2n = D2
n, which can be computed directly with the general formula, Eq. 27, for r = 2,

C2n =

n∑
h=0

(
n

h

)(
h

n

)h(
n− h
n

)n−h
(31)

or its Szpankowski approximation for large n (needed for n > 1000 in practice) (Szpankowski, 2001; Kontkanen et al.,
2003; Kontkanen, 2009),

C2n =

√
nπ

2

(
1 +

2

3

√
2

nπ
+

1

12n
+O

(
1

n3/2

))
(32)

'
√
nπ

2
exp

(√
8

9nπ
+

3π − 16

36nπ

)
(33)

19



An Efficient Search-and-Score Algorithm for Ancestral Graphs using Multivariate Information Scores

This leads to the following local score for each nodeXi, which is minimized over alternative combinations of non-descendant
neighbors, Pa′

Xi
⊆ Pa

Xi
∪ Sp

Xi
∪Ne

Xi
, in the first step of the local search-and-score algorithm (step 1) detailed in the

main text,

Scoren(Xi) = H(Xi|Pa′
Xi

) +
1

N

qxi∑
j

log Crxi
nj (34)

Note that Eq. 34 is defined for categorical variables for which the number of categories rxi
of variable Xi, the number of

combinatorial categories qi of its non-descendant neighbors, and the corresponding number of samples nj (for j = 1, · · · , qi)
are readily obtained from the dataset. However, this node score can also be extended for continuous (or mixed-type) variables,
by subtracting the unconditional entropy H(Xi) to the conditional entropy H(Xi|Pa′

Xi
) in Eq. 34, to obtain an equivalent

node score (up to a H(Xi) constant) in terms of mutual information, H(Xi|Pa′
Xi

) − H(Xi) = −I(Xi;Pa′
Xi

). This
extended node score can then be estimated following the optimization procedure proposed by Cabeli et al 2020 to estimate
(conditional) mutual information between continuous (or mixed-type) variables. Besides, this extended node score leads to
the same definition of edge scores, listed in Table 1 and presented below for categorical variables, which can similarly be
estimated for continuous (or mixed-type) variables using the same optimization procedure proposed by Cabeli et al 2020.

Edge scores. We now define several edge scores to optimize the orientation of each edge,X Y , given its close surrounding
vertices.

To this end, we first introduce a local score for node pairs which simply sums the node scores, Eq. 34, for each node. The
resulting pair scores are listed in Table D.1 for unconnected node pairs and for pairs of nodes connected by a directed edge,
where Pa′

X\Y = Pa
X
∪ Sp

X
\Y and Pa′

Y\X = Pa
Y
∪ Sp

Y
\X with their corresponding combinations of levels, q

y\x and q
x\y .

Table D.1. Local scores for node pairs

Pair score Information fNML Complexity

X 6 Y H(X|Pa′
X\Y ) +H(Y |Pa′

Y\X ) 1
N

( ∑q
x\y
j log Crxnj

+
∑q

y\x
j log Crynj

)
X → Y H(X|Pa′

X\Y ) +H(Y |Pa′
Y\X , X) 1

N

( ∑q
x\y
j log Crxnj

+
∑q

y\xrx

j log Crynj

)
X ← Y H(X|Pa′

X\Y , Y ) +H(Y |Pa′
Y\X ) 1

N

( ∑q
x\y ry

j log Crxnj
+
∑q

y\x
j log Crynj

)

Then, edge scores for directed edges, X → Y and Y → X , are defined w.r.t. to the edge removal score, X 6 Y , by
substracting the pair scores of unconnected pairs to the pair scores of directed edges, leading to the following edge orientation
scores,

Score(X → Y ) = −I(X;Y |Pa′
Y\X ) +

1

N

( q
y\xrx∑
j

log Crynj
−
q
y\x∑
j

log Crynj

)
(35)

Score(Y → X) = −I(X;Y |Pa′
X\Y ) +

1

N

( q
x\y ry∑
j

log Crxnj
−
q
x\y∑
j

log Crxnj

)
(36)

However, if rx 6= ry, the fNML complexities of these orientation scores are not identical for Markov equivalent edge
orientations between nodes sharing the same parents (or spouses) (Chickering, 1995), Pa′

Y\X = Pa′
X\Y = Pa′ and

q
y\x = q

x\y , despite sharing the same conditional mutual information,

I(X;Y |Pa′) =
1

2

(
H(X|Pa′) +H(Y |Pa′, X)

)
+

1

2

(
H(X|Pa′, Y ) +H(Y |Pa′)

)
(37)

This suggests to symmetrize the fNML complexities for edge orientation scores by averaging them over each directed
orientation, as for the conditional information in Eq. 37, leading to the proposed fNML complexity for directed edges given
in Table 1 in the main text.
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For bidirected edges, the proposed local orientation score accounts for all ac-connected subsets in close vicinity of the
bidirected edge, which concerns all subsets including either X and any combination (possibly void) of parents or spouses
different from Y (i.e. corresponding to the information contributions H(X|Pa′

X\Y )) or Y and any combination of parents
or spouses different from X (i.e. corresponding to the information contributions H(Y |Pa′

Y\X )) or, else, including both
nodes X and Y plus any combination of their parents or spouses, corresponding to the following information contribution,
−I(X;Y |Pa′

XY
), where Pa′

XY
= Pa′

X\Y ∪ Pa′
Y\X . This last term, −I(X;Y |Pa′

XY
), contains all the remaining

information contributions once the bidirected orientation score is given relative to the edge removal score (Table D.1) as for
the two directed orientation scores, above. Finally, the symmetrized fNML complexity associated with a bidirected edge
should be computed with the whole set of conditioning parents or spouses, Pa′

XY
, as indicated in Table 1. Note that this

bidirected orientation score becomes also Markov equivalent to the two directed orientation scores, as required, when the
nodes share the same parents and spouses, i.e. Pa′

XY
= Pa′

Y\X = Pa′
X\Y and q

xy
= q

y\x = q
x\y in Table 1.

E. Toy models, benchmark data generation and method settings
E.1. Toy models

Fig. E.1 shows three simple ancestral models used to test MIIC_search&score orientation scores (Table 1) to effectively
predict bidirected orientations when the end nodes do not share the same parents (Model 1), share some parents (Model 2)
or when the bidirected edge is part of a longer than two-collider paths (Model 3).

Model 2 Model 3Model 1

Figure E.1. Simple ancestral graphs.

The data is generated from the theoretical DAG using the rmvDAG function in the pcalg package (Kalisch et al., 2012). Each
node follows a normal distribution, and the data is discretized using bnlearn’s discretize function using Hartemink’s pairwise
mutual information method (Scutari, 2010). For these toy models, the edge orientation scores are computed assuming the
correct parents of each node.

The prediction of the edge orientation scores are summarized in Table E.1 in % of replicates displaying directed edges
(wrong) or bidirected edge (correct) as a function of increasing dataset size N .

Table E.1. Model 1, X2 X4 Model 2, X2 X4 Model 3, X2 X4 Model 3, X4 X6

N ← → ↔ ← → ↔ ← → ↔ ← → ↔
1000 92 6 2 42 54 4 98 2 0 0 100 0
5000 14 20 66 14 12 74 100 0 0 0 100 0

10000 0 2 98 0 0 100 88 0 12 0 76 24
20000 0 0 100 0 0 100 0 0 100 0 0 100
35000 0 0 100 0 0 100 0 0 100 0 0 100
50000 0 0 100 0 0 100 0 0 100 0 0 100

E.2. Generation of linear and non-linear continuous datasets

The benchmark ancestral graphs for continuous datasets were obtained by hiding 0%, 10% or 20% of variables in either
linear or non-linear continuous Bayesian networks of 50 or 150 nodes of connectivity degree between 1 and 5 and average
degree of 3 or 5, corresponding to 360 ancestral graphs in total.
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Undirected graphs were generated using igraph’s sample_degseq function with the vl option https://igraph.org/r/
html/1.2.5/sample_degseq.html. DAGs were then obtained using a random ordering of their nodes.

Linear Gaussian datasets were generated from these DAGs using rmvDAG with uniformly distributed weights
in [−2,−0.1] and [0.1, 2] (https://www.rdocumentation.org/packages/pcalg/versions/2.6-8/
topics/rmvDAG).

Non-linear multimodal datasets were generated from these DAGs using Gaussian mixtures and non-linear structural equation
models following (Cabeli et al., 2020):

• Nodes without parents: Gaussian mixtures with 2 to 4 modes randomly distributed in [−20, 20] with Gaussian noise
σ = 1, and subsequently rescaled betwenen 0 and 1.

• Nodes with parents: non-linear structural equation models including pairwise coupling between the parents and
non-linear transforms (xβ , β ∈ [1, 3], exp(x), sin(x), cos(x)) (Cabeli et al., 2020).

E.3. Causal discovery methods and parameter settings

MIIC_search&score’s source code is accessible at https://github.com/miicTeam/MIICsearchscore.

MIIC R package is accessible at https://github.com/miicTeam/miic_R_package.

MIIC and MIIC_search&score settings were set as described in section 3 of the main text.

M3HC was obtained at https://github.com/mensxmachina/M3HC and run with the following parameter settings:
MaxCondSetM3HC = 10, Threshold = 0.05, Tol = 0.001, TABUsize = 1, skeleton = MMPC.

GFCI was obtained at https://github.com/cmu-phil/py-tetrad and run with the following parameter settings
for linear data: depth = 5, max_disc_path_length = 5, SEM_BIC (penalty_discount = 5), Fisher Z test (α = 0.05) and for
non-linear data: depth = 3, max_disc_path_length = 2, basis function BIC (truncation_limit = 3, penalty_discount = 2),
degenerate Gaussian test (α = 0.05).

DAG-GNN was obtained from https://github.com/ronikobrosly/DAG_from_GNN and run using the follow-
ing key parameters: encoder = MLP, decoder = MLP, optimizer = Adam, graph_threshold = 0.3, h_tol = 1e-8.
The training hyperparameters were adapted to the number of variables (N ) as follows:

• N = 100, epochs = 300, batch_size = 20, lr = 0.002, k_max_iter = 100
• N = 250, epochs = 300, batch_size = 25, lr = 0.002, k_max_iter = 100
• N = 500, epochs = 200, batch_size = 50, lr = 0.001, k_max_iter = 80
• N = 1000, epochs = 200, batch_size = 100, lr = 0.001, k_max_iter = 80
• N = 5000, epochs = 100, batch_size = 250, lr = 0.0001, k_max_iter = 50
• N = 10000, epochs = 100, batch_size = 500, lr = 0.0001, k_max_iter = 50
• N = 20000, epochs = 75, batch_size = 1000, lr = 5e-05, k_max_iter = 20

FCI was obtained at https://github.com/py-why/causal-learn and run with G2-conditional independence
test for categorical data and default parameter α = 0.05. For bootstrapped data, FCI was run with the following param-
eters: Alarm — α = 0.05; Insurance — α = 0.005, depth = 2, max_path_length = 1; Barley — α = 0.0005, depth = 1,
max_path_length = 0; Mildew — α = 0.0005, depth = 1, max_path_length = 0.
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Figure E.2. Benchmark results on continuous datasets. Benchmark results are averaged over 30 independent ancestral graph models
obtained by hiding 0%, 10% or 20% of variables in linear Gaussian models or more complex non-linear multimodal models including 50 or
150 nodes of average degree 3 or 5. MIIC_search&score results are compared to MIIC results used as starting point for MIIC_search&score,
M3HC (Triantafillou & Tsamardinos, 2016), GFCI (Ogarrio et al., 2016), and DAG-GNN (Yu et al., 2019). Causal discovery performance
is assessed in terms of Precision and Recall relative to the theoretical PAGs, while counting as false positive all correctly predicted edges
but with a different orientation as the directed or bidirected edges of the PAG. Error bars: 95% confidence interval.

23



An Efficient Search-and-Score Algorithm for Ancestral Graphs using Multivariate Information Scores

100 10,0001,000100 10,0001,000100 10,0001,000100 10,0001,000100 10,0001,000100 10,0001,000100 10,0001,000100 10,0001,000

MILDEW  (540,150 parameters)BARLEY  (114,005 parameters)INSURANCE  (1,008 parameters)ALARM  (509 parameters)

RecallPrecisionPrecision RecallPrecision RecallPrecision Recall

0
 %

  
L

V

1

0

1
0

 %
  

L
V

2
0

 %
  

L
V

0

1

0

Sample  Size  (N)

1

Figure E.3. Benchmark results on bootstrapped ‘real-world’ categorical datasets from the bnlearn repository. Benchmark results
on bootstrap sensitivity analysis to sampling noise based on 30 independent resamplings with replacement of single categorical datasets of
increasing sizes. Ancestral graphs are obtained by hiding 0%, 10% or 20% of variables in Discrete Bayesian Networks of increasing
complexity (see main text): Alarm, Insurance, Barley and Mildew. Causal discovery performance is assessed in terms of Precision and
Recall relative to the theoretical PAGs, while counting as false positive all correctly predicted edges but with a different orientation
as the directed or bidirected edges of the PAG. MIIC_search&score results are compared to MIIC results used as starting point for
MIIC_search&score and to FCI (Zheng et al., 2024). The lack of FCI results for complex models at large sample sizes stems from FCI
difficulty to converge on bootstrapped datasets. Error bars: 95% confidence interval.
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